Mondal Sourav, Mukherjee Swagato, Hegde Prasad
Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012, India.
Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
Phys Rev Lett. 2022 Jan 14;128(2):022001. doi: 10.1103/PhysRevLett.128.022001.
Taylor expansion in powers of baryon chemical potential (μ_{B}) is an oft-used method in lattice QCD to compute QCD thermodynamics for μ_{B}>0. Based only upon the few known lowest order Taylor coefficients, it is difficult to discern the range of μ_{B} where such an expansion around μ_{B}=0 can be trusted. We introduce a resummation scheme for the Taylor expansion of the QCD equation of state in μ_{B} that is based on the n-point correlation functions of the conserved current (D_{n}). The method resums the contributions of the first N correlation function D_{1},…,D_{N} to the Taylor expansion of the QCD partition function to all orders in μ_{B}. We show that the resummed partition function is an approximation to the reweighted partition function at μ_{B}≠0. We apply the proposed approach to high-statistics lattice QCD calculations using 2+1 flavors of Highly Improved Staggered Quarks with physical quark masses on 32^{3}×8 lattices and for temperatures T≈145-176 MeV. We demonstrate that, as opposed to the Taylor expansion, the resummed version not only leads to improved convergence but also reflects the zeros of the resummed partition function and severity of the sign problem, leading to its eventual breakdown. We also provide a generalization of scheme to include resummation of powers of temperature and quark masses in addition to μ_{B}, and show that the alternative expansion scheme of [S. Borsányi et al., Phys. Rev. Lett. 126, 232001 (2021).PRLTAO0031-900710.1103/PhysRevLett.126.232001] is a special case of this generalized resummation.
以重子化学势((\mu_{B}))的幂次进行泰勒展开是格点量子色动力学中用于计算(\mu_{B}>0)时量子色动力学热力学的常用方法。仅基于少数已知的最低阶泰勒系数,很难辨别在(\mu_{B}=0)附近进行这种展开时可信赖的(\mu_{B})范围。我们引入了一种基于守恒流的(n)点关联函数((D_{n}))的(\mu_{B})中量子色动力学状态方程泰勒展开的重求和方案。该方法将前(N)个关联函数(D_{1},\cdots,D_{N})对量子色动力学配分函数泰勒展开的贡献重求和到(\mu_{B})的所有阶次。我们表明,重求和后的配分函数是(\mu_{B}\neq0)时重加权配分函数的一种近似。我们将所提出的方法应用于使用具有物理夸克质量的(2 + 1)味高度改进交错夸克在(32^{3}×8)格点上且温度(T\approx145 - 176,\text{MeV})的高统计量格点量子色动力学计算。我们证明,与泰勒展开不同,重求和版本不仅导致收敛性提高,而且反映了重求和配分函数的零点和符号问题的严重性,导致其最终失效。我们还提供了该方案的一种推广,以除(\mu_{B})之外还包括温度和夸克质量幂次的重求和,并表明[S. Borsányi等人,《物理评论快报》126, 232001 (2021).PRLTAO0031 - 900710.1103/PhysRevLett.126.232001]的替代展开方案是这种广义重求和的一个特殊情况。