Soave Arianna, Chiu Loraine L Y, Momin Aisha, Waldman Stephen D
Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
Department of Chemical Engineering, Ryerson University, Kerr Hall South, Toronto, ON, KHS 241N, Canada.
Biomech Model Mechanobiol. 2022 Apr;21(2):605-614. doi: 10.1007/s10237-021-01551-4. Epub 2022 Jan 29.
Mechanical stimulation is commonly used in cartilage tissue engineering for enhancing tissue formation and improving the mechanical properties of resulting engineered tissues. However, expanded chondrocytes tend to dedifferentiate and lose expression of their primary cilia, which is necessary for chondrocyte mechanotransduction. As treatment with lithium chloride (LiCl) can restore passaged chondrocytes in monolayer, in this study, we investigated whether this approach would be effective in 3D culture and restore chondrocyte mechanosensitivity. Chondrocytes at different passages (P0 to P2) were treated with 0-50 mM LiCl for 24 h, with different pre-culture durations (0 to 4 days). The primary cilia incidence and length were measured in α-tubulin-stained images. Treated chondrocytes were cultured with or without dynamic compression to evaluate the effect of LiCl-induced primary cilia expression on matrix synthesis by mechanically stimulated chondrocytes. LiCl treatment of chondrocytes in 3D agarose culture increased primary cilia incidence and length, with significant increases in incidence and length using 50 mM LiCl compared to other concentrations (P < 0.05). This effect was further optimized by including a 4-day pre-culture prior to the 24-h 50 mM LiCl treatment. Importantly, LiCl-induced primary cilia expression increased chondrocyte mechanosensitivity. When stimulated with dynamic compression, LiCl-treated P1 chondrocytes increased collagen (1.4-fold, P < 0.1) and proteoglycan (1.5-fold, P < 0.05) synthesis compared to untreated, unstimulated cells. The LiCl treatment method described here can be used to restore primary cilia in passaged chondrocytes, transforming them into a mechanosensitive cell source for cartilage tissue engineering.
机械刺激在软骨组织工程中常用于促进组织形成并改善所得工程组织的力学性能。然而,扩增的软骨细胞容易去分化并失去其初级纤毛的表达,而初级纤毛对于软骨细胞的机械转导是必需的。由于用氯化锂(LiCl)处理可使单层培养的传代软骨细胞恢复原状,因此在本研究中,我们调查了这种方法在三维培养中是否有效以及是否能恢复软骨细胞的机械敏感性。用0-50 mM LiCl处理不同传代(P0至P2)的软骨细胞24小时,并设置不同的预培养时间(0至4天)。在α-微管蛋白染色的图像中测量初级纤毛的发生率和长度。将处理过的软骨细胞在有或没有动态压缩的情况下进行培养,以评估LiCl诱导的初级纤毛表达对机械刺激的软骨细胞基质合成的影响。在三维琼脂糖培养中用LiCl处理软骨细胞可增加初级纤毛的发生率和长度,与其他浓度相比,使用50 mM LiCl时发生率和长度显著增加(P <0.05)。在24小时50 mM LiCl处理之前进行4天的预培养可进一步优化这种效果。重要的是,LiCl诱导的初级纤毛表达增加了软骨细胞的机械敏感性。与未处理、未刺激的细胞相比,当用动态压缩刺激时,LiCl处理的P1软骨细胞的胶原蛋白合成增加(1.4倍,P <0.1),蛋白聚糖合成增加(1.5倍,P <0.05)。这里描述的LiCl处理方法可用于恢复传代软骨细胞中的初级纤毛,将它们转化为用于软骨组织工程的机械敏感细胞来源。
Biomech Model Mechanobiol. 2022-4
Cell Biol Int. 2010-3-24
Eur Cell Mater. 2017-9-20
Osteoarthritis Cartilage. 2014-8
Arthritis Rheumatol. 2014-5
Exp Biol Med (Maywood). 2023-8
Mol Biol Cell. 2023-4-1