College of Physics and Informantion Engineering, Fuzhou University, Fujian, China.
Department of Ultrasound, Fujian Provincial Hospital, Fujian, China.
Med Phys. 2022 Apr;49(4):2413-2426. doi: 10.1002/mp.15492. Epub 2022 Feb 17.
Accurate recognition of medullary thyroid carcinoma (MTC) is of great importance in medical diagnosis, as MTC is rare but second-most malignant thyroid cancers with a high case-fatality ratio. But there is a lower recognition rate on distinguishing MTC from other thyroid nodules in ultrasound images, even by experienced experts. This paper introduces the computer-aided method to tackle the challenge of recognizing MTC from ultrasound images, including limited MTC samples, and ambiguities among MTC, benign nodules, and papillary thyroid carcinoma (PTC).
The recognition of MTC based on large MTC samples of ultrasound images has never been explored, as only one existing work presented a relevant dataset with a limited 21 MTC samples. This study proposes a novel method for primarily differentiating MTC samples from benign nodules and PTC that is the most common thyroid cancer. Our method is a two-stage schema with two important components including a cascaded coarse-to-fine segmentation network and a knowledge-based classification network. The cascaded coarse-to-fine segmentation network incorporates two U-Net++ networks for improving the segmentation results of thyroid nodules. Meanwhile, our knowledge-based classification network extracts and fuses semantic features of solid tissues and calcification for better recognizing the segmented nodules from the ultrasound images. In our experiments, dice similarity coefficient (DSC), intersection over union (IoU), precision, recall, and Hausdorff distance (HD) are adopted for evaluating the segmentation results of thyroid nodules, and accuracy, precision, recall, and F1-score are used for classification evaluation.
We present a well-annotated dataset including samples of 248 MTC, 240 benign nodules, and 239 PTC. For thyroid nodule segmentation, our designed cascaded segmentation network attains values of 0.776 DSC, 0.689 IoU, 0.778 precision, and 0.821 recall, respectively. By incorporating prior knowledge, our method achieves a mean accuracy of 82.1% in classifying thyroid nodules of MTC, PTC, and benign ones. Especially, our method gains the higher performance in recognizing MTC with an accuracy of 86.8%, compared to nearly 70% diagnosis accuracy of experienced doctors. The experimental results on our Fujian Provincial Hospital dataset further validate the efficiency of our proposed method.
Our proposed two-stage method incorporates pipelines of thyroid nodules segmentation and classification of MTC, individually. Quantitative and qualitative results indicate that our proposed model achieves accurate segmentation of thyroid nodules. The results also validate that our learning-based framework facilitates the recognition of MTC, which gains better classification accuracy than experienced doctors.
在医学诊断中,准确识别甲状腺髓样癌(MTC)非常重要,因为 MTC 虽然罕见,但却是恶性程度第二高的甲状腺癌,病死率也很高。然而,在超声图像中,即使是经验丰富的专家,也很难将 MTC 与其他甲状腺结节区分开来。本文提出了一种计算机辅助方法,用于解决从超声图像中识别 MTC 的挑战,包括 MTC 样本有限,以及 MTC、良性结节和甲状腺乳头状癌(PTC)之间的混淆。
基于超声图像中大量 MTC 样本的 MTC 识别从未被探索过,因为仅有一项现有工作提出了一个相关数据集,其中 MTC 样本仅为 21 个。本研究提出了一种新的方法,用于初步区分 MTC 样本与良性结节和最常见的甲状腺癌 PTC。我们的方法是一个两阶段的方案,包括两个重要组成部分:级联的粗到精分割网络和基于知识的分类网络。级联的粗到精分割网络包含两个 U-Net++ 网络,用于提高甲状腺结节的分割结果。同时,我们的基于知识的分类网络提取并融合了实体组织和钙化的语义特征,以便更好地从超声图像中识别分割后的结节。在我们的实验中,采用了 Dice 相似系数(DSC)、交并比(IoU)、精度、召回率和 Hausdorff 距离(HD)来评估甲状腺结节的分割结果,采用准确性、精度、召回率和 F1 分数来评估分类评估。
我们提供了一个标注良好的数据集,其中包括 248 个 MTC、240 个良性结节和 239 个 PTC 样本。对于甲状腺结节分割,我们设计的级联分割网络分别达到了 0.776 的 DSC、0.689 的 IoU、0.778 的精度和 0.821 的召回率。通过引入先验知识,我们的方法在分类 MTC、PTC 和良性甲状腺结节时的平均准确率达到 82.1%。特别是,我们的方法在识别 MTC 方面表现更好,准确率为 86.8%,而经验丰富的医生的诊断准确率接近 70%。我们在福建省立医院数据集上的实验结果进一步验证了我们提出的方法的有效性。
我们提出的两阶段方法分别包含甲状腺结节分割和 MTC 分类的管道。定量和定性结果表明,我们提出的模型实现了甲状腺结节的准确分割。结果还验证了我们基于学习的框架有助于识别 MTC,其分类准确性优于经验丰富的医生。