Vigliaturo Ruggero, Jamnik Maja, Dražić Goran, Podobnik Marjetka, Žnidarič Magda Tušek, Ventura Giancarlo Della, Redhammer Günther J, Žnidaršič Nada, Caserman Simon, Gieré Reto
Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, USA.
Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
Sci Rep. 2022 Feb 2;12(1):1782. doi: 10.1038/s41598-022-05802-x.
Amphibole asbestos is related to lung fibrosis and several types of lung tumors. The disease-triggering mechanisms still challenge our diagnostic capabilities and are still far from being fully understood. The literature focuses primarily on the role and formation of asbestos bodies in lung tissues, but there is a distinct lack of studies on amphibole particles that have been internalized by alveolar epithelial cells (AECs). These internalized particles may directly interact with the cell nucleus and the organelles, exerting a synergistic action with asbestos bodies (AB) from a different location. Here we document the near-atomic- to nano-scale transformations induced by, and taking place within, AECs of three distinct amphiboles (anthophyllite, grunerite, "amosite") with different Fe-content and morphologic features. We show that: (i) an Fe-rich layer is formed on the internalized particles, (ii) particle grain boundaries are transformed abiotically by the internal chemical environment of AECs and/or by a biologically induced mineralization mechanism, (iii) the Fe-rich material produced on the particle surface does not contain large amounts of P, in stark contrast to extracellular ABs, and (iv) the iron in the Fe-rich layer is derived from the particle itself. Internalized particles and ABs follow two distinct formation mechanisms reaching different physicochemical end-states.
闪石类石棉与肺纤维化及多种类型的肺部肿瘤有关。其致病机制仍对我们的诊断能力构成挑战,且远未被完全理解。文献主要聚焦于石棉小体在肺组织中的作用及形成,但对于已被肺泡上皮细胞(AECs)内化的闪石颗粒的研究明显不足。这些内化颗粒可能直接与细胞核及细胞器相互作用,与来自不同位置的石棉小体(AB)发挥协同作用。在此,我们记录了三种具有不同铁含量和形态特征的闪石(直闪石、铁石棉、“铁直闪石”)在AECs内引发的以及发生在其中的近原子尺度到纳米尺度的转变。我们表明:(i)在内化颗粒上形成了富含铁的层;(ii)颗粒晶界通过AECs的内部化学环境和/或生物诱导矿化机制发生非生物转变;(iii)与细胞外石棉小体形成鲜明对比的是,颗粒表面产生的富含铁的物质不含大量磷;(iv)富含铁层中的铁源自颗粒本身。内化颗粒和石棉小体遵循两种不同的形成机制,达到不同的物理化学终态。