Suppr超能文献

基于机器学习的龙舌兰检测中的无人机图像。

Unmanned aerial vehicle images in the machine learning for agave detection.

机构信息

Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para El Desarrollo Integral Regional, Unidad Durango, Colonia 20 de noviembre II C.P. 34220, Durango, México.

CONACYT-Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para El Desarrollo Integral Regional, Unidad Durango, Colonia 20 de noviembre II C.P. 34220, Durango, México.

出版信息

Environ Sci Pollut Res Int. 2022 Sep;29(41):61662-61673. doi: 10.1007/s11356-022-18985-7. Epub 2022 Feb 2.

Abstract

In this study, six supervised classification algorithms were compared. The algorithms were based on cluster analysis, distance, deep learning, and object-based image analysis. Our objective was to determine which of these algorithms has the highest overall accuracy in both detection and automated estimation of agave cover in a given area to help growers manage their plantations. An orthomosaic with a spatial resolution of 2.5 cm was derived from 300 images obtained with a DJI Inspire 1 unmanned aerial system. Two training classes were defined: (1) sites where the presence of agaves was identified and (2) "absence" where there were no agaves but other plants were present. The object-oriented algorithm was found to have the highest overall accuracy (0.963), followed by the support-vector machine with 0.928 accuracy and the neural network with 0.914. The algorithms with statistical criteria for classification were the least accurate: Mahalanobis distance = 0.752 accuracy and minimum distance = 0.421. We further recommend that the object-oriented algorithm be used, because in addition to having the highest overall accuracy for the image segmentation process, it yields parameters that are useful for estimating the coverage area, size, and shapes, which can aid in better selection of agave individuals for harvest.

摘要

在这项研究中,比较了六种有监督分类算法。这些算法基于聚类分析、距离、深度学习和基于对象的图像分析。我们的目标是确定这些算法中哪一种在给定区域内检测和自动估计龙舌兰覆盖率方面具有最高的总体准确性,以帮助种植者管理他们的种植园。从 DJI Inspire 1 无人机系统获取的 300 张图像中得出了具有 2.5 厘米空间分辨率的正射镶嵌图。定义了两个训练类:(1) 存在龙舌兰的地点,和 (2)“不存在”的地点,那里没有龙舌兰,但有其他植物。发现基于对象的算法具有最高的总体准确性(0.963),其次是支持向量机,准确性为 0.928,神经网络为 0.914。具有分类统计标准的算法准确性最低:马氏距离=0.752 准确性和最小距离=0.421。我们进一步建议使用基于对象的算法,因为除了图像分割过程具有最高的总体准确性外,它还产生了有用的参数,可用于估计覆盖面积、大小和形状,这有助于更好地选择要收获的龙舌兰个体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验