文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles.

作者信息

Khodadust Rouhollah, Unal Ozlem, Yagci Acar Havva

机构信息

Koc University, Department of Chemistry, Surface Science and Technology Center (KUYTAM), Rumelifeneri Yolu, Sariyer, Istanbul, Turkey.

University of Health Science, Health Science Institute, Department of Biotechnology Selimiye Mahallesi, Tıbbiye, Uskudar, Istanbul, Turkey.

出版信息

Beilstein J Nanotechnol. 2022 Jan 18;13:82-95. doi: 10.3762/bjnano.13.6. eCollection 2022.


DOI:10.3762/bjnano.13.6
PMID:35116215
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8787352/
Abstract

Polyethylenimine (PEI), which is frequently used for polyplex formation and effective gene transfection, is rarely recognized as a luminescent polymer. Therefore, it is usually tagged with an organic fluorophore to be optically tracked. Recently, we developed branched PEI (bPEI) superparamagnetic iron oxide nanoparticles (SPION@bPEI) with blue luminescence 1200 times stronger than that of bPEI without a traditional fluorophore, due to partial PEI oxidation during the synthesis. Here, we demonstrate in vitro dye-free optical imaging and successful gene transfection with luminescent SPION@bPEI, which was further modified for receptor-mediated delivery of the cargo selectively to cancer cell lines overexpressing the epidermal growth factor receptor (EGFR). Pro-apoptotic polyinosinic-polycytidylic acid sodium (PIC) was delivered to HeLa cells with SPION@bPEI and caused a dramatic reduction in the cell viability at otherwise non-toxic nanoparticle concentrations, proving that bPEI coating is still an effective component for the delivery of an anionic cargo. Besides, a strong intracellular optical signal supports the optically traceable nature of these nanoparticles. SPION@bPEI nanoparticles were further conjugated with Erbitux (Erb), which is an anti-EGFR antibody for targeting EGFR-overexpressing cancer cell lines. SPION@bPEI-Erb was used for the delivery of a GFP plasmid wherein the transfection was confirmed by the luminescence of the expressed gene within the transfected cells. Poor GFP expression in MCF7, a slightly better expression in HeLa, and a significant enhancement in the transfection of HCT116 cells proved a selective uptake and hence the targeting ability of Erb-tagged nanoparticles. Altogether, this study proves luminescent, cationic, and small SPION@bPEI nanoparticles as strong candidates for imaging and gene therapy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/fc32284fc829/Beilstein_J_Nanotechnol-13-82-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/a1320a4362d8/Beilstein_J_Nanotechnol-13-82-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/7ff499cb6b35/Beilstein_J_Nanotechnol-13-82-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/34a286321965/Beilstein_J_Nanotechnol-13-82-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/92f9fd5e9c35/Beilstein_J_Nanotechnol-13-82-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/cd780b058d3a/Beilstein_J_Nanotechnol-13-82-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/09c691bb62aa/Beilstein_J_Nanotechnol-13-82-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/fc32284fc829/Beilstein_J_Nanotechnol-13-82-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/a1320a4362d8/Beilstein_J_Nanotechnol-13-82-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/7ff499cb6b35/Beilstein_J_Nanotechnol-13-82-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/34a286321965/Beilstein_J_Nanotechnol-13-82-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/92f9fd5e9c35/Beilstein_J_Nanotechnol-13-82-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/cd780b058d3a/Beilstein_J_Nanotechnol-13-82-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/09c691bb62aa/Beilstein_J_Nanotechnol-13-82-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5109/8787352/fc32284fc829/Beilstein_J_Nanotechnol-13-82-g008.jpg

相似文献

[1]
Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles.

Beilstein J Nanotechnol. 2022-1-18

[2]
MR traceable delivery of p53 tumor suppressor gene by PEI-functionalized superparamagnetic iron oxide nanoparticles.

J Biomed Nanotechnol. 2012-6

[3]
Interleukin-4 receptor-targeted delivery of Bcl-xL siRNA sensitizes tumors to chemotherapy and inhibits tumor growth.

Biomaterials. 2017-7-15

[4]
Branched Polyethylenimine-Superparamagnetic Iron Oxide Nanoparticles (bPEI-SPIONs) Improve the Immunogenicity of Tumor Antigens and Enhance Th1 Polarization of Dendritic Cells.

J Immunol Res. 2015-6-28

[5]
Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer.

Int J Nanomedicine. 2017-7-26

[6]
Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo.

J Gastroenterol. 2012-11-20

[7]
MRI-visible liposome-polyethylenimine complexes for DNA delivery: preparation and evaluation.

Biosci Biotechnol Biochem. 2019-4

[8]
Biodistribution and Toxicity Assessment of Superparamagnetic Iron Oxide Nanoparticles In Vitro and In Vivo.

Curr Med Sci. 2018-12-7

[9]
A new strategy for stem cells therapy for erectile dysfunction: Adipose-derived stem cells transfect Neuregulin-1 gene through superparamagnetic iron oxide nanoparticles.

Investig Clin Urol. 2022-5

[10]
Surface modification of superparamagnetic iron oxide (SPION) and comparison of cytotoxicity effect of mPEG2000-PEI-SPION and mPEG750-PEI-SPION on the human embryonic carcinoma stem cell, NTERA2 cell line.

Hum Antibodies. 2020

引用本文的文献

[1]
The Luminescence of Laser-Produced Carbon Nanodots: The Effect of Aggregation in PEI Solution.

Materials (Basel). 2024-3-29

[2]
Revisiting of Properties and Modified Polyethylenimine-Based Cancer Gene Delivery Systems.

Biochem Genet. 2024-2

[3]
Designing red-fluorescent superparamagnetic nanoparticles by conjugation with gold clusters.

RSC Adv. 2022-12-9

本文引用的文献

[1]
Multifunctional optical sensing probes based on organic-inorganic hybrid composites.

J Mater Chem B. 2016-8-21

[2]
NIR-light active hybrid nanoparticles for combined imaging and bimodal therapy of cancerous cells.

J Mater Chem B. 2014-10-28

[3]
Aggregation induced emission-based fluorescent nanoparticles: fabrication methodologies and biomedical applications.

J Mater Chem B. 2014-7-28

[4]
Ultra-small fluorescent inorganic nanoparticles for bioimaging.

J Mater Chem B. 2014-5-21

[5]
Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon.

Nano Rev Exp. 2018-7-3

[6]
Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light.

Angew Chem Int Ed Engl. 1998-3-2

[7]
Knockdown of HIP1 expression promotes ligand‑induced endocytosis of EGFR in HeLa cells.

Oncol Rep. 2017-10-12

[8]
A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles.

Ultramicroscopy. 2017-11

[9]
Glutathione reduces cytotoxicity of polyethyleneimine coated magnetic nanoparticles in CHO cells.

Toxicol In Vitro. 2017-6

[10]
Tailoring Renal Clearance and Tumor Targeting of Ultrasmall Metal Nanoparticles with Particle Density.

Angew Chem Int Ed Engl. 2016-11-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索