Suppr超能文献

修饰 OmpG 纳米孔的 pH 敏感性以提高在酸性 pH 下的检测能力。

Modifying the pH sensitivity of OmpG nanopore for improved detection at acidic pH.

机构信息

Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts.

Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts.

出版信息

Biophys J. 2022 Mar 1;121(5):731-741. doi: 10.1016/j.bpj.2022.01.023. Epub 2022 Feb 5.

Abstract

The outer membrane protein G (OmpG) nanopore is a monomeric β-barrel channel consisting of seven flexible extracellular loops. Its most flexible loop, loop 6, can be used to host high-affinity binding ligands for the capture of protein analytes, which induces characteristic current patterns for protein identification. At acidic pH, the ability of OmpG to detect protein analytes is hampered by its tendency toward the closed state, which renders the nanopore unable to reveal current signal changes induced by bound analytes. In this work, critical residues that control the pH-dependent gating of loop 6 were identified, and an OmpG nanopore that can stay predominantly open at a broad range of pHs was created by mutating these pH-sensitive residues. A short single-stranded DNA was chemically tethered to the pH-insensitive OmpG to demonstrate the utility of the OmpG nanopore for sensing complementary DNA and a DNA binding protein at an acidic pH.

摘要

外膜蛋白 G(OmpG)纳米孔是一种由七个灵活的细胞外环组成的单体β-桶状通道。其最灵活的环,即环 6,可以用来容纳高亲和力的结合配体,用于捕获蛋白质分析物,从而诱导用于蛋白质识别的特征电流模式。在酸性 pH 下,OmpG 检测蛋白质分析物的能力受到其趋向于关闭状态的阻碍,这使得纳米孔无法揭示结合分析物所引起的电流信号变化。在这项工作中,确定了控制环 6 的 pH 依赖性门控的关键残基,并通过突变这些 pH 敏感残基创建了一个能够在广泛的 pH 值范围内主要保持开放状态的 OmpG 纳米孔。一条短的单链 DNA 通过化学方式连接到 pH 不敏感的 OmpG 上,以证明 OmpG 纳米孔在酸性 pH 下用于感应互补 DNA 和 DNA 结合蛋白的实用性。

相似文献

1
Modifying the pH sensitivity of OmpG nanopore for improved detection at acidic pH.
Biophys J. 2022 Mar 1;121(5):731-741. doi: 10.1016/j.bpj.2022.01.023. Epub 2022 Feb 5.
2
Tuning Protein Discrimination Through Altering the Sampling Interface Formed between the Analyte and the OmpG Nanopore.
ACS Sens. 2021 Mar 26;6(3):1286-1294. doi: 10.1021/acssensors.0c02580. Epub 2021 Feb 18.
3
A pH-independent quiet OmpG pore with enhanced electrostatic repulsion among the extracellular loops.
Biochim Biophys Acta Biomembr. 2021 Jan 1;1863(1):183485. doi: 10.1016/j.bbamem.2020.183485. Epub 2020 Oct 13.
4
Quiet Outer Membrane Protein G (OmpG) Nanopore for Biosensing.
ACS Sens. 2019 May 24;4(5):1230-1235. doi: 10.1021/acssensors.8b01645. Epub 2019 Apr 25.
6
Selective Detection of Protein Homologues in Serum Using an OmpG Nanopore.
Anal Chem. 2015 Nov 3;87(21):11143-9. doi: 10.1021/acs.analchem.5b03350. Epub 2015 Oct 23.
7
Protein Analyte Sensing with an Outer Membrane Protein G (OmpG) Nanopore.
Methods Mol Biol. 2021;2186:77-94. doi: 10.1007/978-1-0716-0806-7_7.
8
A Selective Activity-Based Approach for Analysis of Enzymes with an OmpG Nanopore.
Methods Mol Biol. 2021;2186:115-133. doi: 10.1007/978-1-0716-0806-7_9.
9
Improving Single-Molecule Antibody Detection Selectivity through Optimization of Peptide Epitope Presentation in OmpG Nanopore.
ACS Sens. 2023 Jul 28;8(7):2673-2680. doi: 10.1021/acssensors.3c00528. Epub 2023 Jun 28.
10
pH-induced conformational change of the beta-barrel-forming protein OmpG reconstituted into native E. coli lipids.
J Mol Biol. 2010 Feb 26;396(3):610-6. doi: 10.1016/j.jmb.2009.12.034. Epub 2009 Dec 28.

引用本文的文献

1
The Potential of Nanopore Technologies in Peptide and Protein Sensing for Biomarker Detection.
Biosensors (Basel). 2025 Aug 16;15(8):540. doi: 10.3390/bios15080540.
2
Gating of β-Barrel Protein Pores, Porins, and Channels: An Old Problem with New Facets.
Int J Mol Sci. 2023 Jul 28;24(15):12095. doi: 10.3390/ijms241512095.
3
Detection of Biological Molecules Using Nanopore Sensing Techniques.
Biomedicines. 2023 Jun 2;11(6):1625. doi: 10.3390/biomedicines11061625.

本文引用的文献

1
Proteomics in the pharmaceutical and biotechnology industry: a look to the next decade.
Expert Rev Proteomics. 2021 Jul;18(7):503-526. doi: 10.1080/14789450.2021.1962300. Epub 2021 Aug 12.
2
Single Molecule Ratcheting Motion of Peptides in a Porin A (MspA) Nanopore.
Nano Lett. 2021 Aug 11;21(15):6703-6710. doi: 10.1021/acs.nanolett.1c02371. Epub 2021 Jul 28.
3
The emerging landscape of single-molecule protein sequencing technologies.
Nat Methods. 2021 Jun;18(6):604-617. doi: 10.1038/s41592-021-01143-1. Epub 2021 Jun 7.
4
Nanopore sensing: A physical-chemical approach.
Biochim Biophys Acta Biomembr. 2021 Sep 1;1863(9):183644. doi: 10.1016/j.bbamem.2021.183644. Epub 2021 May 11.
5
Tuning Protein Discrimination Through Altering the Sampling Interface Formed between the Analyte and the OmpG Nanopore.
ACS Sens. 2021 Mar 26;6(3):1286-1294. doi: 10.1021/acssensors.0c02580. Epub 2021 Feb 18.
6
Protein Analyte Sensing with an Outer Membrane Protein G (OmpG) Nanopore.
Methods Mol Biol. 2021;2186:77-94. doi: 10.1007/978-1-0716-0806-7_7.
7
Electro-Osmotic Vortices Promote the Capture of Folded Proteins by PlyAB Nanopores.
Nano Lett. 2020 May 13;20(5):3819-3827. doi: 10.1021/acs.nanolett.0c00877. Epub 2020 Apr 13.
8
Different Anomeric Sugar Bound States of Maltose Binding Protein Resolved by a Cytolysin A Nanopore Tweezer.
ACS Nano. 2020 Feb 25;14(2):1727-1737. doi: 10.1021/acsnano.9b07385. Epub 2020 Feb 11.
9
Beyond mass spectrometry, the next step in proteomics.
Sci Adv. 2020 Jan 10;6(2):eaax8978. doi: 10.1126/sciadv.aax8978. eCollection 2020 Jan.
10
Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore.
Nat Biotechnol. 2020 Feb;38(2):176-181. doi: 10.1038/s41587-019-0345-2. Epub 2019 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验