Bhattacharjee Nirjhar, Mahalingam Krishnamurthy, Fedorko Adrian, Lauter Valeria, Matzelle Matthew, Singh Bahadur, Grutter Alexander, Will-Cole Alexandria, Page Michael, McConney Michael, Markiewicz Robert, Bansil Arun, Heiman Don, Sun Nian Xiang
Northeastern University, Department of Electrical and Computer Engineering, Boston, MA, 02115, USA.
Air Force Research Laboratory, Nano-electronic Materials Branch, Wright Patterson Air Force Base, Boston, OH, 05433, USA.
Adv Mater. 2022 Apr;34(15):e2108790. doi: 10.1002/adma.202108790. Epub 2022 Mar 2.
Breaking time-reversal symmetry by introducing magnetic order, thereby opening a gap in the topological surface state bands, is essential for realizing useful topological properties such as the quantum anomalous Hall and axion insulator states. In this work, a novel topological antiferromagnetic (AFM) phase is created at the interface of a sputtered, c-axis-oriented, topological insulator/ferromagnet heterostructure-Bi Te /Ni Fe because of diffusion of Ni in Bi Te (Ni-Bi Te ). The AFM property of the Ni-Bi Te interfacial layer is established by observation of spontaneous exchange bias in the magnetic hysteresis loop and compensated moments in the depth profile of the magnetization using polarized neutron reflectometry. Analysis of the structural and chemical properties of the Ni-Bi Te layer is carried out using selected-area electron diffraction, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy. These studies, in parallel with first-principles calculations, indicate a solid-state chemical reaction that leads to the formation of Ni-Te bonds and the presence of topological antiferromagnetic (AFM) compound NiBi Te in the Ni-Bi Te interface layer. The Neél temperature of the Ni-Bi Te layer is ≈63 K, which is higher than that of typical magnetic topological insulators (MTIs). The presented results provide a pathway toward industrial complementary metal-oxide-semiconductor (CMOS)-process-compatible sputtered-MTI heterostructures, leading to novel materials for topological quantum devices.
通过引入磁序打破时间反演对称性,从而在拓扑表面态能带中打开一个能隙,对于实现诸如量子反常霍尔和轴子绝缘体状态等有用的拓扑性质至关重要。在这项工作中,由于Ni在Bi₂Te₃中的扩散(Ni-Bi₂Te₃),在溅射的、c轴取向的拓扑绝缘体/铁磁体异质结构Bi₂Te₃/NiFe的界面处产生了一种新型拓扑反铁磁(AFM)相。通过观察磁滞回线中的自发交换偏置以及使用极化中子反射仪测量磁化强度深度分布中的补偿矩,确定了Ni-Bi₂Te₃界面层的AFM特性。利用选区电子衍射、电子能量损失谱和X射线光电子能谱对Ni-Bi₂Te₃层的结构和化学性质进行了分析。这些研究与第一性原理计算并行,表明发生了固态化学反应,导致形成Ni-Te键,并在Ni-Bi₂Te₃界面层中存在拓扑反铁磁(AFM)化合物NiBi₂Te₃。Ni-Bi₂Te₃层的奈尔温度约为63 K,高于典型的磁性拓扑绝缘体(MTIs)。所呈现的结果为实现与工业互补金属氧化物半导体(CMOS)工艺兼容的溅射MTI异质结构提供了一条途径,从而为拓扑量子器件带来新型材料。