Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada.
Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
J Org Chem. 2022 Mar 4;87(5):2367-2379. doi: 10.1021/acs.joc.1c02254. Epub 2022 Feb 8.
Herein we describe results on the pairing properties of synthetic DNA and RNA oligonucleotides that contain nucleotide analogues with a 7-membered sugar ring (oxepane nucleotides). Specifically, we describe the stereoselective synthesis of a set of three oxepane thymine nucleosides (OxT), their conversion to phosphoramidite derivatives, and their use in solid-phase synthesis to yield chimeric OxT-DNA and OxT-RNA strands. The different regioisomeric OxT phosphoramidites allowed for positional variations of the phosphate bridge and assessment of duplex stability when the oxepane nucleotides were incorporated in dsDNA, dsRNA, and DNA-RNA hybrids. Little to no destabilization was observed when two of the three regioisomeric OxT units were incorporated in the DNA strand of DNA-RNA hybrids, a remarkable result considering the dramatically different structure of oxepanes in comparison to 2'-deoxynucleosides. Extensive molecular modeling and dynamics studies further revealed the various structural features responsible for the tolerance of both OxT modifications in DNA-RNA duplexes, such as base-base stacking and sugar-phosphate H-bond interactions. These studies suggest that oxepane nucleotide analogues may find applications in synthetic biology, where synthetic oligonucleotides can be used to create new tools for biotechnology and medicine.
在此,我们描述了含有 7 元糖环(氧杂环丁烷核苷酸)的核苷酸类似物的合成 DNA 和 RNA 寡核苷酸的配对性质的结果。具体来说,我们描述了一组三种氧杂环丁烷胸腺嘧啶核苷(OxT)的立体选择性合成、它们转化为亚磷酰胺衍生物,以及它们在固相合成中的用途,以生成嵌合 OxT-DNA 和 OxT-RNA 链。不同的区域异构 OxT 亚磷酰胺衍生物允许磷酸桥的位置变化,并评估当氧杂环丁烷核苷酸掺入 dsDNA、dsRNA 和 DNA-RNA 杂种时的双链稳定性。当将三个区域异构 OxT 单元中的两个掺入 DNA-RNA 杂种的 DNA 链中时,几乎没有观察到稳定性降低,这是一个显著的结果,考虑到与 2'-脱氧核苷相比,氧杂环丁烷的结构有很大的不同。广泛的分子建模和动力学研究进一步揭示了在 DNA-RNA 双链体中容忍两种 OxT 修饰的各种结构特征,例如碱基堆积和糖-磷酸 H-键相互作用。这些研究表明,氧杂环丁烷核苷酸类似物可能在合成生物学中有应用,其中合成寡核苷酸可用于为生物技术和医学创造新工具。