Graduate School of Engineering, Tohoku University, Sendai, Japan.
Department of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Japan.
FEBS J. 2022 Aug;289(15):4602-4621. doi: 10.1111/febs.16392. Epub 2022 Feb 22.
Most cis-prenyltransferases (cPTs) use all-trans-oligoprenyl diphosphate, such as (E,E)-farnesyl diphosphate (FPP, C ), but scarcely accept dimethylallyl diphosphate (DMAPP, C ), as an allylic diphosphate primer in consecutive cis-condensations of isopentenyl diphosphate. Consequently, naturally occurring cis-1,4-polyisoprenoids contain a few trans-isoprene units at their ω-end. However, some Solanum plants have distinct cPTs that primarily use DMAPP as a primer to synthesize all-cis-oligoprenyl diphosphates, such as neryl diphosphate (NPP, C ). However, the mechanism underlying the allylic substrate preference of cPTs remains unclear. In this study, we determined the crystal structure of NDPS1, an NPP synthase from tomato, and investigated critical residues for primer substrate preference through structural comparisons of cPTs. Highly conserved Gly and Trp in the primer substrate-binding region of cPTs were discovered to be substituted for Ile/Leu and Phe, respectively, in DMAPP-preferring cPTs. An I106G mutant of NDPS1 exhibited a low preference for DMAPP, but a higher preference for FPP. However, an I106G/F276W mutant preferred not only DMAPP but also all-trans-oligoprenyl diphosphates, with 15-fold higher catalytic efficiency than WT. Surprisingly, the mutant synthesized longer polyisoprenoids (C ). Furthermore, one of the helix domains that constitute the hydrophobic cleft for accommodating elongating prenyl chains was also demonstrated to be critical in primer substrate preference. An NDPS1 I106G/F276W mutant with a chimeric helix domain swapped with that of a medium-chain cPT synthesizing C polyisoprenoids showed over 94-fold increase in catalytic efficiency for all primer substrates tested, resulting in longer products (C ). These NDPS1 mutants could be used in the enzymatic synthesis of nonnatural all-cis-polyisoprenoids.
大多数顺式prenyltransferase(cPT)使用全反式寡聚prenyl二磷酸,如(E,E)-法呢基二磷酸(FPP,C),但几乎不接受二甲基烯丙基二磷酸(DMAPP,C)作为连续顺式缩合的烯丙基二磷酸引物异戊二烯二磷酸。因此,天然存在的顺式-1,4-多异戊二烯在其ω-末端含有几个反式异戊二烯单元。然而,一些茄属植物具有明显的 cPT,主要使用 DMAPP 作为引物合成全顺式寡聚prenyl 二磷酸,如香叶基二磷酸(NPP,C)。然而,cPT 烯丙基底物偏好的机制尚不清楚。在这项研究中,我们确定了番茄中 NPP 合酶 NDPS1 的晶体结构,并通过 cPT 的结构比较研究了关键残基对引物底物偏好的影响。发现 cPT 中引物底物结合区域高度保守的甘氨酸和色氨酸分别被 DMAPP 偏好 cPT 中的异亮氨酸/亮氨酸和苯丙氨酸取代。NDPS1 的 I106G 突变体对 DMAPP 的偏好性较低,但对 FPP 的偏好性较高。然而,I106G/F276W 突变体不仅偏爱 DMAPP,还偏爱全反式寡聚 prenyl 二磷酸,其催化效率比 WT 高 15 倍。令人惊讶的是,突变体合成了更长的多异戊二烯(C)。此外,构成容纳延伸 prenyl 链的疏水性裂缝的一个螺旋结构域也被证明对引物底物偏好至关重要。与合成 C 多异戊二烯的中链 cPT 的螺旋结构域交换的 NDPS1 I106G/F276W 突变体对所有测试的引物底物的催化效率提高了 94 倍以上,导致产物更长(C)。这些 NDPS1 突变体可用于非天然全顺式多异戊二烯的酶促合成。