Suppr超能文献

预测润滑对片剂可压缩性的影响。

Prediction of the impact of lubrication on tablet compactibility.

机构信息

Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.

Novartis Pharma AG, Basel 4002, Switzerland.

出版信息

Int J Pharm. 2022 Apr 5;617:121557. doi: 10.1016/j.ijpharm.2022.121557. Epub 2022 Feb 5.

Abstract

The tableting of most pharmaceutical formulations requires the addition of lubricants to reduce ejection forces, prevent tooling damage and tablet defects. The internal addition of lubricants is known to reduce tablet tensile strength, especially of mainly plastically deforming materials. To date, available models show only limited quantitative predictive accuracy for the influence of lubricant concentration on the mechanical strength of tablets. This study aims to fill this gap and present a model based on the Ryshkewitch-Duckworth equation that can estimate the compactibility profiles of lubricated formulations. Binary mixtures of different diluents (microcrystalline cellulose and lactose) were prepared with common lubricants (magnesium stearate and sodium stearyl fumarate) and subsequently tableted. The resulting compactibility profiles were fitted using the Ryshkewitch-Duckworth equation and the derived fit parameters (k and σ) were correlated with the lubricant concentration. Subsequently, an empirical model was established which requires a minimum of experimental data and is able to predict the tensile strength of lubricated diluent tablets. Consequently, the developed empirical model is an interesting and valuable addition to the existing multi-component compacting models available and offers the opportunity to accelerate experimentation in the development of new tablet formulations.

摘要

大多数药物制剂的压片都需要添加润滑剂来降低推出力、防止工具损坏和片剂缺陷。内部添加润滑剂已知会降低片剂的拉伸强度,特别是主要塑性变形的材料。迄今为止,可用的模型仅对润滑剂浓度对片剂机械强度的影响显示出有限的定量预测准确性。本研究旨在填补这一空白,并提出一个基于 Ryshkewitch-Duckworth 方程的模型,该模型可以估计润滑配方的可压缩性曲线。用常用润滑剂(硬脂酸镁和富马酸硬脂酸钠)制备了不同稀释剂(微晶纤维素和乳糖)的二元混合物,并随后压片。使用 Ryshkewitch-Duckworth 方程拟合所得的可压缩性曲线,并将推导的拟合参数(k 和 σ)与润滑剂浓度相关联。随后,建立了一个经验模型,该模型需要最少的实验数据,并能够预测润滑稀释剂片剂的拉伸强度。因此,开发的经验模型是对现有多组分压缩模型的一个有趣且有价值的补充,并为新片剂配方的开发提供了加速实验的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验