Lee Dae-Won, Choi Young-Ung, Park Heung-Sik, Park Young-Su, Choi Cheol Young
Marine Bio-Resources Research Unit, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea.
Marine Bio-Resources Research Unit, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea.
Mar Environ Res. 2022 Mar;175:105562. doi: 10.1016/j.marenvres.2022.105562. Epub 2022 Jan 11.
Climate change due to increasing CO emissions results in the increase in water temperatures, which is accompanied by the decrease in pH and salinity levels of the ocean. Ocean acidification reflects the gradual pH reduction due to changes in the carbon chemistry, which is caused by the increase in anthropogenic CO emissions. The subsequent changes in the water temperatures and carbon chemistry of the oceans affect the survival and distribution of aquatic animals. In this study, we analyzed the levels of cortisol, superoxide dismutase, catalase, and caspase-3 in the plasma of juvenile olive flounder Paralichthys olivaceus under combined hyposalinity and acidification. To evaluate the physiological response to these changes, the superoxide dismutase activity and apoptosis were analyzed in the liver cells. Hyposalinity caused oxidative stress and cell damage, while also activating the antioxidant system. Environmental acidification affected the stress response and antioxidant mechanism of P. olivaceus in the early stage of acclimation but did not appear to exceed hyposalinity stress. These findings suggest that a hyposaline environment may be a stronger environmental stressor than an acidifying environment for P. olivaceus, and will help understand the capacity of P. olivaceus to cope with expected future ocean acidification.
二氧化碳排放增加导致的气候变化致使水温上升,同时伴随着海洋pH值和盐度水平的下降。海洋酸化反映了由于碳化学变化导致的pH值逐渐降低,而这种变化是由人为二氧化碳排放增加引起的。海洋水温及碳化学的后续变化会影响水生动物的生存和分布。在本研究中,我们分析了低盐度和酸化共同作用下,幼体牙鲆(Paralichthys olivaceus)血浆中皮质醇、超氧化物歧化酶、过氧化氢酶和半胱天冬酶-3的水平。为评估对这些变化的生理反应,我们分析了肝细胞中的超氧化物歧化酶活性和细胞凋亡情况。低盐度会引发氧化应激和细胞损伤,同时还会激活抗氧化系统。环境酸化在适应初期会影响牙鲆的应激反应和抗氧化机制,但似乎并未超过低盐度应激。这些发现表明对于牙鲆而言低盐环境可能比酸化环境是更强的环境应激源,并且将有助于了解牙鲆应对未来预期海洋酸化的能力。