Khanchandani Heena, El-Zoka Ayman A, Kim Se-Ho, Tezins Uwe, Vogel Dirk, Sturm Andreas, Raabe Dierk, Gault Baptiste, Stephenson Leigh T
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straβe 1, Düsseldorf, Germany.
Department of Materials, Imperial College, South Kensington, London, United Kingdom.
PLoS One. 2022 Feb 9;17(2):e0262543. doi: 10.1371/journal.pone.0262543. eCollection 2022.
Numerous metallurgical and materials science applications depend on quantitative atomic-scale characterizations of environmentally-sensitive materials and their transient states. Studying the effect upon materials subjected to thermochemical treatments in specific gaseous atmospheres is of central importance for specifically studying a material's resistance to certain oxidative or hydrogen environments. It is also important for investigating catalytic materials, direct reduction of an oxide, particular surface science reactions or nanoparticle fabrication routes. This manuscript realizes such experimental protocols upon a thermochemical reaction chamber called the "Reacthub" and allows for transferring treated materials under cryogenic & ultrahigh vacuum (UHV) workflow conditions for characterisation by either atom probe or scanning Xe+/electron microscopies. Two examples are discussed in the present study. One protocol was in the deuterium gas charging (25 kPa D2 at 200°C) of a high-manganese twinning-induced-plasticity (TWIP) steel and characterization of the ingress and trapping of hydrogen at various features (grain boundaries in particular) in efforts to relate this to the steel's hydrogen embrittlement susceptibility. Deuterium was successfully detected after gas charging but most contrast originated from the complex ion FeOD+ signal and the feature may be an artefact. The second example considered the direct deuterium reduction (5 kPa D2 at 700°C) of a single crystal wüstite (FeO) sample, demonstrating that under a standard thermochemical treatment causes rapid reduction upon the nanoscale. In each case, further studies are required for complete confidence about these phenomena, but these experiments successfully demonstrate that how an ex-situ thermochemical treatment can be realised that captures environmentally-sensitive transient states that can be analysed by atomic-scale by atom probe microscope.
许多冶金和材料科学应用依赖于对环境敏感材料及其瞬态状态进行定量的原子尺度表征。研究特定气态气氛中热化学处理对材料的影响,对于专门研究材料对某些氧化或氢环境的抗性至关重要。这对于研究催化材料、氧化物的直接还原、特定的表面科学反应或纳米颗粒制造路线也很重要。本手稿在一个名为“Reacthub”的热化学反应室上实现了这样的实验方案,并允许在低温和超高真空(UHV)工作流程条件下转移处理过的材料,以便通过原子探针或扫描Xe + /电子显微镜进行表征。本研究讨论了两个例子。一个方案是对高锰孪晶诱导塑性(TWIP)钢进行充氘气(200°C下25 kPa D2),并表征氢在各种特征(特别是晶界)处的进入和捕获情况,以努力将其与钢的氢脆敏感性联系起来。充氘气后成功检测到了氘,但大多数对比度来自复杂离子FeOD + 信号,该特征可能是一种假象。第二个例子考虑了对单晶方铁矿(FeO)样品进行直接氘还原(700°C下5 kPa D2),表明在标准热化学处理下会在纳米尺度上迅速还原。在每种情况下,都需要进一步研究才能对这些现象完全确信,但这些实验成功地证明了如何实现一种非原位热化学处理,该处理能够捕获可通过原子探针显微镜进行原子尺度分析的环境敏感瞬态状态。