Suppr超能文献

为风险调整后的累积和控制图建立患者组合模型。

Modeling the patient mix for risk-adjusted CUSUM charts.

作者信息

Wittenberg Philipp

机构信息

Department of Mathematics and Statistics, Helmut Schmidt University, Germany.

出版信息

Stat Methods Med Res. 2022 May;31(5):779-800. doi: 10.1177/09622802211053205. Epub 2022 Mar 10.

Abstract

The improvement of surgical quality and the corresponding early detection of its changes is of increasing importance. To this end, sequential monitoring procedures such as the risk-adjusted CUmulative SUM chart are frequently applied. The patient risk score population (patient mix), which considers the patients' perioperative risk, is a core component for this type of quality control chart. Consequently, it is important to be able to adapt different shapes of patient mixes and determine their impact on the monitoring scheme. This article proposes a framework for modeling the patient mix by a discrete beta-binomial and a continuous beta distribution for risk-adjusted CUSUM charts. Since the model-based approach is not limited by data availability, patient mix can be analyzed. We examine the effects on the control chart's false alarm behavior for more than 100,000 different scenarios for a cardiac surgery data set. Our study finds a negative relationship between the average risk score and the number of false alarms. The results indicate that a changing patient mix has a considerable impact and, in some cases, almost doubles the number of expected false alarms.

摘要

手术质量的提高以及对其变化的相应早期检测变得越来越重要。为此,诸如风险调整累积和图等序贯监测程序经常被应用。考虑患者围手术期风险的患者风险评分群体(患者组合)是这类质量控制图的核心组成部分。因此,能够适应不同形状的患者组合并确定它们对监测方案的影响很重要。本文提出了一个框架,用于通过离散贝塔 - 二项分布和连续贝塔分布对风险调整累积和图的患者组合进行建模。由于基于模型的方法不受数据可用性的限制,因此可以分析患者组合。我们针对一个心脏手术数据集,在超过100,000种不同情况下检查了对控制图误报行为的影响。我们的研究发现平均风险评分与误报数量之间存在负相关关系。结果表明,变化的患者组合具有相当大的影响,在某些情况下,预期误报数量几乎翻倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dadc/9014690/fa7c6aadae52/10.1177_09622802211053205-fig1.jpg

相似文献

1
Modeling the patient mix for risk-adjusted CUSUM charts.
Stat Methods Med Res. 2022 May;31(5):779-800. doi: 10.1177/09622802211053205. Epub 2022 Mar 10.
2
Monitoring binary outcomes using risk-adjusted charts: a comparative study.
Stat Med. 2011 Oct 15;30(23):2815-26. doi: 10.1002/sim.4305. Epub 2011 Jul 22.
3
Dynamic probability control limits for risk-adjusted Bernoulli CUSUM charts.
Stat Med. 2015 Nov 10;34(25):3336-48. doi: 10.1002/sim.6547. Epub 2015 Jun 3.
4
Dynamic probability control limits for risk-adjusted CUSUM charts based on multiresponses.
Stat Med. 2017 Jul 20;36(16):2547-2558. doi: 10.1002/sim.7312. Epub 2017 Apr 19.
5
Risk-adjusted CUSUM charts under model error.
Stat Med. 2019 May 30;38(12):2206-2218. doi: 10.1002/sim.8104. Epub 2019 Feb 5.
6
Use of risk-adjusted CUSUM charts to monitor 30-day mortality in Danish hospitals.
Clin Epidemiol. 2018 Apr 18;10:445-456. doi: 10.2147/CLEP.S157162. eCollection 2018.
7
Risk-adjusted zero-inflated Poisson CUSUM charts for monitoring influenza surveillance data.
BMC Med Inform Decis Mak. 2021 Jul 30;21(Suppl 2):96. doi: 10.1186/s12911-021-01443-8.
8
The impact of varying patient populations on the in-control performance of the risk-adjusted CUSUM chart.
Int J Qual Health Care. 2015 Feb;27(1):31-6. doi: 10.1093/intqhc/mzu092. Epub 2014 Dec 8.
9
Statistical process monitoring to improve quality assurance of inpatient care.
BMC Health Serv Res. 2020 Jan 7;20(1):21. doi: 10.1186/s12913-019-4866-7.

本文引用的文献

1
A Fast Online Monitoring Approach for Surgical Risks.
Math Biosci Eng. 2020 Apr 16;17(4):3130-3146. doi: 10.3934/mbe.2020177.
2
Risk-adjusted CUSUM charts under model error.
Stat Med. 2019 May 30;38(12):2206-2218. doi: 10.1002/sim.8104. Epub 2019 Feb 5.
3
A simple signaling rule for variable life-adjusted display derived from an equivalent risk-adjusted CUSUM chart.
Stat Med. 2018 Jul 20;37(16):2455-2473. doi: 10.1002/sim.7647. Epub 2018 Apr 17.
5
Dynamic probability control limits for risk-adjusted Bernoulli CUSUM charts.
Stat Med. 2015 Nov 10;34(25):3336-48. doi: 10.1002/sim.6547. Epub 2015 Jun 3.
6
The impact of varying patient populations on the in-control performance of the risk-adjusted CUSUM chart.
Int J Qual Health Care. 2015 Feb;27(1):31-6. doi: 10.1093/intqhc/mzu092. Epub 2014 Dec 8.
7
Risk assessment methods for cardiac surgery and intervention.
Nat Rev Cardiol. 2014 Dec;11(12):704-14. doi: 10.1038/nrcardio.2014.136. Epub 2014 Sep 23.
8
A new risk-adjusted Bernoulli cumulative sum chart for monitoring binary health data.
Stat Methods Med Res. 2016 Dec;25(6):2704-2713. doi: 10.1177/0962280214530883. Epub 2014 Apr 22.
9
Monitoring risk-adjusted medical outcomes allowing for changes over time.
Biostatistics. 2014 Oct;15(4):665-76. doi: 10.1093/biostatistics/kxt057. Epub 2013 Dec 29.
10
Assessing the effect of estimation error on risk-adjusted CUSUM chart performance.
Int J Qual Health Care. 2012 Apr;24(2):176-81. doi: 10.1093/intqhc/mzr082. Epub 2011 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验