Suppr超能文献

隐马尔可夫模型与 HMMTeacher。

Hidden Markov Modeling with HMMTeacher.

机构信息

PhD Program in Sciences Mention Modeling of Chemical and Biological Systems, School of Bioinformatics Engineering, Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Campus Talca, Talca, Chile.

Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Campus Talca, Talca, Chile.

出版信息

PLoS Comput Biol. 2022 Feb 10;18(2):e1009703. doi: 10.1371/journal.pcbi.1009703. eCollection 2022 Feb.

Abstract

Is it possible to learn and create a first Hidden Markov Model (HMM) without programming skills or understanding the algorithms in detail? In this concise tutorial, we present the HMM through the 2 general questions it was initially developed to answer and describe its elements. The HMM elements include variables, hidden and observed parameters, the vector of initial probabilities, and the transition and emission probability matrices. Then, we suggest a set of ordered steps, for modeling the variables and illustrate them with a simple exercise of modeling and predicting transmembrane segments in a protein sequence. Finally, we show how to interpret the results of the algorithms for this particular problem. To guide the process of information input and explicit solution of the basic HMM algorithms that answer the HMM questions posed, we developed an educational webserver called HMMTeacher. Additional solved HMM modeling exercises can be found in the user's manual and answers to frequently asked questions. HMMTeacher is available at https://hmmteacher.mobilomics.org, mirrored at https://hmmteacher1.mobilomics.org. A repository with the code of the tool and the webpage is available at https://gitlab.com/kmilo.f/hmmteacher.

摘要

是否可以在不具备编程技能或不深入了解算法的情况下学习和创建第一个隐马尔可夫模型(HMM)?在这个简明的教程中,我们通过 HMM 最初开发来回答的 2 个一般性问题来介绍 HMM,并描述其要素。HMM 的要素包括变量、隐藏和观察参数、初始概率向量以及转移和发射概率矩阵。然后,我们提出了一组有序的步骤,用于对变量进行建模,并通过对蛋白质序列中跨膜片段进行建模和预测的简单练习来说明这些步骤。最后,我们展示了如何解释针对此特定问题的算法结果。为了指导信息输入过程并明确解决回答 HMM 问题的基本 HMM 算法,我们开发了一个名为 HMMTeacher 的教育型网络服务器。在用户手册中可以找到其他解决的 HMM 建模练习,以及常见问题解答。HMMTeacher 可在 https://hmmteacher.mobilomics.org 上获得,在 https://hmmteacher1.mobilomics.org 上也有镜像。工具代码和网页的存储库可在 https://gitlab.com/kmilo.f/hmmteacher 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验