Suppr超能文献

GC6mA-Pred:一种用于鉴定水稻基因组中 DNA N6-甲基腺嘌呤位点的深度学习方法。

GC6mA-Pred: A deep learning approach to identify DNA N6-methyladenine sites in the rice genome.

机构信息

Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China; College of Computer and Data Science, Fuzhou University, Fuzhou, PR China.

Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China.

出版信息

Methods. 2022 Aug;204:14-21. doi: 10.1016/j.ymeth.2022.02.001. Epub 2022 Feb 9.

Abstract

MOTIVATION

DNA N6-methyladenine (6mA) is a pivotal DNA modification for various biological processes. More accurate prediction of 6mA methylation sites plays an irreplaceable part in grasping the internal rationale of related biological activities. However, the existing prediction methods only extract information from a single dimension, which has some limitations. Therefore, it is very necessary to obtain the information of 6mA sites from different dimensions, so as to establish a reliable prediction method.

RESULTS

In this study, a neural network based bioinformatics model named GC6mA-Pred is proposed to predict N6-methyladenine modifications in DNA sequences. GC6mA-Pred extracts significant information from both sequence level and graph level. In the sequence level, GC6mA-Pred uses a three-layer convolution neural network (CNN) model to represent the sequence. In the graph level, GC6mA-Pred employs graph neural network (GNN) method to integrate various information contained in the chemical molecular formula corresponding to DNA sequence. In our newly built dataset, GC6mA-Pred shows better performance than other existing models. The results of comparative experiments have illustrated that GC6mA-Pred is capable of producing a marked effect in accurately identifying DNA 6mA modifications.

摘要

动机

DNA N6-甲基腺嘌呤(6mA)是各种生物过程的关键 DNA 修饰。更准确地预测 6mA 甲基化位点在掌握相关生物活性的内在原理方面起着不可替代的作用。然而,现有的预测方法仅从单一维度提取信息,存在一定的局限性。因此,非常有必要从不同的维度获取 6mA 位点的信息,从而建立一个可靠的预测方法。

结果

在这项研究中,提出了一种基于神经网络的生物信息学模型 GC6mA-Pred,用于预测 DNA 序列中的 N6-甲基腺嘌呤修饰。GC6mA-Pred 从序列水平和图水平提取重要信息。在序列水平上,GC6mA-Pred 使用三层卷积神经网络(CNN)模型来表示序列。在图水平上,GC6mA-Pred 采用图神经网络(GNN)方法来整合 DNA 序列对应的化学分子公式中包含的各种信息。在我们新建立的数据集上,GC6mA-Pred 优于其他现有模型。对比实验的结果表明,GC6mA-Pred 能够在准确识别 DNA 6mA 修饰方面产生显著效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验