Suppr超能文献

基于压力的右心室射血分数估计。

Pressure-based estimation of right ventricular ejection fraction.

机构信息

Department. of Anesthesiology, Division of Applied Hemodynamics, Yale School of Medicine, New Haven, CT, USA.

Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale School of Medicine, P.O. Box 208057, 300 Cedar Street TAC - 441 South, New Haven, CT, 06520-8057, USA.

出版信息

ESC Heart Fail. 2022 Apr;9(2):1436-1443. doi: 10.1002/ehf2.13839. Epub 2022 Feb 12.

Abstract

AIMS

A method for estimating right ventricular ejection fraction (RVEF) from RV pressure waveforms was recently validated in an experimental model. Currently, cardiac magnetic resonance imaging (MRI) is the clinical reference standard for measurement of RVEF in pulmonary arterial hypertension (PAH). The present study was designed to test the hypothesis that the pressure-based method can detect clinically significant reductions in RVEF as determined by cardiac MRI in patients with PAH.

METHODS AND RESULTS

RVEF estimates derived from analysis of RV pressure waveforms recorded during right heart catheterization (RHC) in 25 patients were compared with cardiac MRI measurements of RVEF obtained within 24 h. Three investigators blinded to cardiac MRI results independently performed pressure-based RVEF estimation with the mean of their results used for comparison. Linear regression was used to assess correlation, and a receiver operator characteristic (ROC) curve was derived to define ability of the pressure-based method to detect a maladaptive RV response, defined as RVEF <35% on cardiac MRI. In 23 patients, an automated adaptation of the pressure-based RVEF method was also applied as proof of concept for beat-to-beat RVEF monitoring. The study cohort was comprised of 16 female and 9 male PAH patients with an average age of 53 ± 13 years. RVEF measured by cardiac MRI ranged from 16% to 57% (mean 37.7 ± 11.6%), and estimated RVEF from 15% to 54% (mean 36.2 ± 11.2%; P = 0.6). Measured and estimated RVEF were significantly correlated (r  = 0.78; P < 0.0001). ROC curve analysis demonstrated an area under the curve of 0.94 ± 0.04 with a sensitivity of 81% and specificity of 85% for predicting a maladaptive RV response. As a secondary outcome, with the recognized limitation of non-coincident measures, Bland-Altman analysis was performed and indicated minimal bias for estimated RVEF (-1.5%) with limits of agreement of ± 10.9%. Adaptation of the pressure-based estimation method to provide beat-to-beat RVEF also demonstrated significant correlation between the median beat-to-beat value over 10 s with cardiac MRI (r  = 0.66; P < 0.001), and an area under the ROC curve of 0.94 ± 0.04 (CI = 0.86 to 1.00) with sensitivity and specificity of 78% and 86%, respectively, for predicting a maladaptive RV response.

CONCLUSIONS

Pressure-based estimation of RVEF correlates with cardiac MRI and detects clinically significant reductions in RVEF. Study results support potential utility of pressure-based RVEF estimation for assessing the response to diagnostic or therapeutic interventions during RHC.

摘要

目的

最近在实验模型中验证了一种从右心室压力波形估算右心室射血分数(RVEF)的方法。目前,心脏磁共振成像(MRI)是肺动脉高压(PAH)中测量 RVEF 的临床参考标准。本研究旨在检验以下假设,即基于压力的方法能够检测到 PAH 患者中由心脏 MRI 确定的临床上显著降低的 RVEF。

方法和结果

比较了 25 例患者在右心导管检查(RHC)期间记录的 RV 压力波形分析得出的 RVEF 估计值与在 24 小时内获得的心脏 MRI 测量的 RVEF。三名对心脏 MRI 结果不知情的研究人员独立进行了基于压力的 RVEF 估计,他们的平均值用于比较。使用线性回归评估相关性,并绘制受试者工作特征(ROC)曲线,以定义基于压力的方法检测 RV 适应性不良反应(定义为心脏 MRI 上的 RVEF <35%)的能力。在 23 例患者中,还应用了基于压力的 RVEF 方法的自动适应,作为用于证明 RHC 期间实时 RVEF 监测的概念验证。研究队列包括 16 名女性和 9 名男性 PAH 患者,平均年龄为 53±13 岁。心脏 MRI 测量的 RVEF 范围为 16%至 57%(平均 37.7±11.6%),而估计的 RVEF 为 15%至 54%(平均 36.2±11.2%;P=0.6)。测量和估计的 RVEF 呈显著相关(r=0.78;P<0.0001)。ROC 曲线分析显示曲线下面积为 0.94±0.04,具有 81%的敏感性和 85%的特异性,可预测 RV 适应性不良反应。作为次要结果,鉴于非一致测量的公认局限性,进行了 Bland-Altman 分析,并表明估计的 RVEF 有 1.5%的最小偏差(-1.5%),且一致性界限为±10.9%。基于压力的估计方法的自适应以提供 10 秒内的每搏 RVEF 也显示出中位数与心脏 MRI 之间的显著相关性(r=0.66;P<0.001),并且 ROC 曲线的曲线下面积为 0.94±0.04(CI=0.86 至 1.00),具有 78%的敏感性和 86%的特异性,分别用于预测 RV 适应性不良反应。

结论

基于压力的 RVEF 估计与心脏 MRI 相关,并可检测到 RVEF 的临床显著降低。研究结果支持在 RHC 期间评估诊断或治疗干预反应时使用基于压力的 RVEF 估计的潜在效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/846a/8934966/1d46f3900a83/EHF2-9-1436-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验