Suppr超能文献

一种用于检测小的和连锁的 QTL-环境互作的压缩方差分量混合模型框架。

A compressed variance component mixed model framework for detecting small and linked QTL-by-environment interactions.

机构信息

College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

State Key Laboratory of Cotton Biology, Anyang 455000, China.

出版信息

Brief Bioinform. 2022 Mar 10;23(2). doi: 10.1093/bib/bbab596.

Abstract

Detecting small and linked quantitative trait loci (QTLs) and QTL-by-environment interactions (QEIs) for complex traits is a difficult issue in immortalized F2 and F2:3 design, especially in the era of global climate change and environmental plasticity research. Here we proposed a compressed variance component mixed model. In this model, a parametric vector of QTL genotype and environment combination effects replaced QTL effects, environmental effects and their interaction effects, whereas the combination effect polygenic background replaced the QTL and QEI polygenic backgrounds. Thus, the number of variance components in the mixed model was greatly reduced. The model was incorporated into our genome-wide composite interval mapping (GCIM) to propose GCIM-QEI-random and GCIM-QEI-fixed, respectively, under random and fixed models of genetic effects. First, potentially associated QTLs and QEIs were selected from genome-wide scanning. Then, significant QTLs and QEIs were identified using empirical Bayes and likelihood ratio test. Finally, known and candidate genes around these significant loci were mined. The new methods were validated by a series of simulation studies and real data analyses. Compared with ICIM, GCIM-QEI-random had 29.77 ± 18.20% and 24.33 ± 10.15% higher average power, respectively, in 0.5-3.0% QTL and QEI detection, 43.44 ± 9.53% and 51.47 ± 15.70% higher average power, respectively, in linked QTL and QEI detection, and identified 30 more known genes for four rice yield traits, because GCIM-QEI-random identified more small genes/loci, being 2.69 ± 2.37% for additional genes. GCIM-QEI-random was slightly better than GCIM-QEI-fixed. In addition, the new methods may be extended into backcross and genome-wide association studies. This study provides effective methods for detecting small-effect and linked QTLs and QEIs.

摘要

检测复杂性状的小连锁数量性状位点(QTL)和 QTL 与环境互作(QEIs)是固定 F2 和 F2:3 设计中的一个难题,特别是在全球气候变化和环境可塑性研究的时代。在这里,我们提出了一种压缩方差分量混合模型。在这个模型中,一个 QTL 基因型和环境组合效应的参数向量取代了 QTL 效应、环境效应及其互作效应,而组合效应多基因背景则取代了 QTL 和 QEI 多基因背景。因此,混合模型中的方差分量数量大大减少。该模型被纳入我们的全基因组复合区间作图(GCIM)中,分别提出了随机和固定遗传效应模型下的 GCIM-QEI-random 和 GCIM-QEI-fixed。首先,从全基因组扫描中选择潜在相关的 QTL 和 QEIs。然后,使用经验贝叶斯和似然比检验确定显著的 QTL 和 QEIs。最后,挖掘这些显著位点周围的已知和候选基因。通过一系列模拟研究和真实数据分析验证了新方法。与 ICIM 相比,GCIM-QEI-random 在 0.5-3.0%的 QTL 和 QEI 检测中分别具有 29.77±18.20%和 24.33±10.15%的平均更高功效,在连锁 QTL 和 QEI 检测中分别具有 43.44±9.53%和 51.47±15.70%的平均更高功效,并且为四个水稻产量性状鉴定了 30 个更多的已知基因,因为 GCIM-QEI-random 鉴定了更多的小基因/位点,额外基因的比例为 2.69±2.37%。GCIM-QEI-random 略优于 GCIM-QEI-fixed。此外,新方法可以扩展到回交和全基因组关联研究。本研究为检测小效应和连锁 QTL 和 QEIs 提供了有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验