Suppr超能文献

将机器学习应用于急性卒中患者复发性卒中的颈动脉超声特征分析

Applying Machine Learning to Carotid Sonographic Features for Recurrent Stroke in Patients With Acute Stroke.

作者信息

Lin Shih-Yi, Law Kin-Man, Yeh Yi-Chun, Wu Kuo-Chen, Lai Jhih-Han, Lin Chih-Hsueh, Hsu Wu-Huei, Lin Cheng-Chieh, Kao Chia-Hung

机构信息

Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan.

Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan.

出版信息

Front Cardiovasc Med. 2022 Jan 28;9:804410. doi: 10.3389/fcvm.2022.804410. eCollection 2022.

Abstract

BACKGROUND

Although carotid sonographic features have been used as predictors of recurrent stroke, few large-scale studies have explored the use of machine learning analysis of carotid sonographic features for the prediction of recurrent stroke.

METHODS

We retrospectively collected electronic medical records of enrolled patients from the data warehouse of China Medical University Hospital, a tertiary medical center in central Taiwan, from January 2012 to November 2018. We included patients who underwent a documented carotid ultrasound within 30 days of experiencing an acute first stroke during the study period. We classified these participants into two groups: those with non-recurrent stroke (those who has not been diagnosed with acute stroke again during the study period) and those with recurrent stoke (those who has been diagnosed with acute stroke during the study period). A total of 1,235 carotid sonographic parameters were analyzed. Data on the patients' demographic characteristics and comorbidities were also collected. Python 3.7 was used as the programming language, and the scikit-learn toolkit was used to complete the derivation and verification of the machine learning methods.

RESULTS

In total, 2,411 patients were enrolled in this study, of whom 1,896 and 515 had non-recurrent and recurrent stroke, respectively. After extraction, 43 features of carotid sonography (36 carotid sonographic parameters and seven transcranial color Doppler sonographic parameter) were analyzed. For predicting recurrent stroke, CatBoost achieved the highest area under the curve (0.844, CIs 95% 0.824-0.868), followed by the Light Gradient Boosting Machine (0.832, CIs 95% 0.813-0.851), random forest (0.819, CIs 95% 0.802-0.846), support-vector machine (0.759, CIs 95% 0.739-0.781), logistic regression (0.781, CIs 95% 0.764-0.800), and decision tree (0.735, CIs 95% 0.717-0.755) models.

CONCLUSION

When using the CatBoost model, the top three features for predicting recurrent stroke were determined to be the use of anticoagulation medications, the use of NSAID medications, and the resistive index of the left subclavian artery. The CatBoost model demonstrated efficiency and achieved optimal performance in the predictive classification of non-recurrent and recurrent stroke.

摘要

背景

尽管颈动脉超声特征已被用作复发性中风的预测指标,但很少有大规模研究探讨利用机器学习分析颈动脉超声特征来预测复发性中风。

方法

我们回顾性收集了台湾中部一家三级医疗中心中国医科大学附设医院数据仓库中2012年1月至2018年11月登记患者的电子病历。我们纳入了在研究期间首次急性中风后30天内接受过记录在案的颈动脉超声检查的患者。我们将这些参与者分为两组:非复发性中风组(在研究期间未再次被诊断为急性中风的患者)和复发性中风组(在研究期间被诊断为急性中风的患者)。总共分析了1235项颈动脉超声参数。还收集了患者的人口统计学特征和合并症数据。使用Python 3.7作为编程语言,并使用scikit-learn工具包来完成机器学习方法的推导和验证。

结果

本研究共纳入2411例患者,其中1896例为非复发性中风,515例为复发性中风。提取后,分析了43项颈动脉超声特征(36项颈动脉超声参数和7项经颅彩色多普勒超声参数)。对于预测复发性中风,CatBoost模型的曲线下面积最高(0.844,95%置信区间0.824 - 0.868),其次是轻梯度提升机(0.832,95%置信区间0.813 - 0.851)、随机森林(0.819,95%置信区间0.802 - 0.846)、支持向量机(0.759,95%置信区间0.739 - 0.781)、逻辑回归(0.781,95%置信区间0.764 - 0.800)和决策树(0.735,95%置信区间0.717 - 0.755)模型。

结论

使用CatBoost模型时,预测复发性中风的前三个特征被确定为抗凝药物的使用、非甾体抗炎药的使用以及左锁骨下动脉的阻力指数。CatBoost模型在非复发性和复发性中风的预测分类中显示出效率并取得了最佳性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01b6/8833232/1719f0003569/fcvm-09-804410-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验