Suppr超能文献

基于矩阵束方法的稀疏频变阵列高效方向图综合

Efficient Beampattern Synthesis for Sparse Frequency Diverse Array via Matrix Pencil Method.

机构信息

School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

出版信息

Sensors (Basel). 2022 Jan 28;22(3):1042. doi: 10.3390/s22031042.

Abstract

Due to the introduction of frequency offsets, the pattern synthesis problem of sparse Frequency diverse array (FDA) becomes more complicated than that of the phased array. A typical way to solve this problem is to use a global optimization algorithm, but this is usually time-consuming. In this paper, we propose an efficient non-iterative beampattern synthesis approach for sparse FDA. For a given reference pattern, which can be generated by other synthesis methods, we first sample it uniformly and construct the Hankel matrix with the sampled data. By low-rank processing, a low-rank approximation version of the Hankel matrix can then be obtained. Finally, the matrix enhancement and matrix pencil (MEMP) and matrix pencil (MP) methods are applied to estimate the antenna positions, frequency offsets, and excitations of the obtained array from the approximated matrix. Besides this, two typical FDA frameworks including multi-carrier FDA (MCFDA) and standard FDA (SFDA) are considered. Numerical simulation results prove that the proposed method outperforms the existing methods in terms of synthesis error, average runtime, and percentage of saving elements.

摘要

由于频率偏移的引入,稀疏频分阵列(FDA)的模式综合问题变得比相控阵更加复杂。解决这个问题的一种典型方法是使用全局优化算法,但这通常很耗时。在本文中,我们提出了一种用于稀疏 FDA 的高效非迭代波束形成方法。对于给定的参考模式,可以通过其他合成方法生成,我们首先对其进行均匀采样,并使用采样数据构造汉克尔矩阵。通过低秩处理,可以得到汉克尔矩阵的低秩逼近版本。最后,应用矩阵增强和矩阵束(MEMP)和矩阵束(MP)方法从近似矩阵中估计得到的阵列的天线位置、频率偏移和激励。此外,还考虑了两种典型的 FDA 框架,包括多载波 FDA(MCFDA)和标准 FDA(SFDA)。数值模拟结果证明,与现有方法相比,该方法在综合误差、平均运行时间和节省元素的百分比方面表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a44c/8837931/50607a311647/sensors-22-01042-g001.jpg

相似文献

1
Efficient Beampattern Synthesis for Sparse Frequency Diverse Array via Matrix Pencil Method.
Sensors (Basel). 2022 Jan 28;22(3):1042. doi: 10.3390/s22031042.
3
MRI artifact correction using sparse + low-rank decomposition of annihilating filter-based hankel matrix.
Magn Reson Med. 2017 Jul;78(1):327-340. doi: 10.1002/mrm.26330. Epub 2016 Jul 28.
4
Efficient and Accurate Synthesis for Array Pattern Shaping.
Sensors (Basel). 2022 Jul 25;22(15):5537. doi: 10.3390/s22155537.
5
Recovering low-rank and sparse matrix based on the truncated nuclear norm.
Neural Netw. 2017 Jan;85:10-20. doi: 10.1016/j.neunet.2016.09.005. Epub 2016 Oct 3.
6
Sparse and Low-Rank Decomposition of a Hankel Structured Matrix for Impulse Noise Removal.
IEEE Trans Image Process. 2018 Mar;27(3):1448-1461. doi: 10.1109/TIP.2017.2771471. Epub 2017 Nov 9.
7
Optimization of Sparse Cross Array Synthesis via Perturbed Convex Optimization.
Sensors (Basel). 2020 Aug 31;20(17):4929. doi: 10.3390/s20174929.
8
Annihilating Filter-Based Low-Rank Hankel Matrix Approach for Image Inpainting.
IEEE Trans Image Process. 2015 Nov;24(11):3498-511. doi: 10.1109/TIP.2015.2446943. Epub 2015 Jun 17.
9
Sparse reconstruction of correlated multichannel activity.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3897-900. doi: 10.1109/EMBC.2013.6610396.
10
Single-ensemble-based eigen-processing methods for color flow imaging--Part II. The matrix pencil estimator.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Mar;55(3):573-87. doi: 10.1109/TUFFC.2008.683.

引用本文的文献

1
Fast Low-Sidelobe Pattern Synthesis Using the Symmetry of Array Geometry.
Sensors (Basel). 2024 Jun 21;24(13):4059. doi: 10.3390/s24134059.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验