Hamadi Hussein, Lussier Benjamin, Fantoni Isabelle, Francis Clovis
Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7253 Heudiasyc, 60200 Compiègne, France; Université Libanaise, Faculté de Génie, Centre de Recherche Scientifique en Ingénierie (CRSI), Beirut, Lebanon.
Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7253 Heudiasyc, 60200 Compiègne, France.
ISA Trans. 2022 Oct;129(Pt A):520-539. doi: 10.1016/j.isatra.2022.01.007. Epub 2022 Jan 10.
This article presents the design and implementation of a fault tolerant architecture for sensor fusion that tolerates faults on a quadrotor unmanned aerial vehicle (UAV). It aims to tolerate both hardware sensors faults (GPS jamming, IMU lock or freezing, magnetometer sensitivity to high power magnetic fields...) and software faults (faults in the Kalman filter, bad parameters initialization....). The proposed architecture uses data fusion with Kalman filters in order to estimate the states (position and orientation) of the UAV. It includes an analytical redundancy using the dynamic model of the system. The estimations of the defined Kalman filters and the dynamic model feed a weighted average voter, which increases the accuracy of the outputs and the error detection process. The proposed architecture allows multiple recovery solutions to a faulty system and thus increasing its flexibility. The architecture is validated using numerical simulations and experimental flights in real outdoor environment using a quadrotor.
本文介绍了一种用于四旋翼无人机(UAV)的传感器融合容错架构的设计与实现。其目的是容忍硬件传感器故障(GPS干扰、惯性测量单元(IMU)锁定或冻结、磁力计对强磁场的敏感性等)和软件故障(卡尔曼滤波器中的故障、参数初始化错误等)。所提出的架构使用卡尔曼滤波器进行数据融合,以估计无人机的状态(位置和方向)。它包括利用系统动态模型的解析冗余。定义的卡尔曼滤波器和动态模型的估计值输入到加权平均表决器中,这提高了输出的准确性和错误检测过程。所提出的架构允许对故障系统采用多种恢复解决方案,从而提高其灵活性。该架构通过数值模拟和在真实户外环境中使用四旋翼进行的实验飞行得到了验证。