Suppr超能文献

慢性肾脏病的早期预测模型。

An early prediction model for chronic kidney disease.

机构信息

Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.

School of Public Health, Tianjin Medical University, Tianjin, China.

出版信息

Sci Rep. 2022 Feb 17;12(1):2765. doi: 10.1038/s41598-022-06665-y.

Abstract

Based on the high incidence of chronic kidney disease (CKD) in recent years, a better early prediction model for identifying high-risk individuals before end-stage renal failure (ESRD) occurs is needed. We conducted a nested case-control study in 348 subjects (116 cases and 232 controls) from the "Tianjin Medical University Chronic Diseases Cohort". All subjects did not have CKD at baseline, and they were followed up for 5 years until August 2018. Using multivariate Cox regression analysis, we found five nongenetic risk factors associated with CKD risks. Logistic regression was performed to select single nucleotide polymorphisms (SNPs) from which we obtained from GWAS analysis of the UK Biobank and other databases. We used a logistic regression model and natural logarithm OR value weighting to establish CKD genetic/nongenetic risk prediction models. In addition, the final comprehensive prediction model is the arithmetic sum of the two optimal models. The AUC of the prediction model reached 0.894, while the sensitivity was 0.827, and the specificity was 0.801. We found that age, diabetes, and normal high values of urea nitrogen, TGF-β, and ADMA were independent risk factors for CKD. A comprehensive prediction model was also established, which may help identify individuals who are most likely to develop CKD early.

摘要

基于近年来慢性肾脏病(CKD)的高发,我们需要建立一种更好的预测模型,以便在终末期肾衰竭(ESRD)发生之前识别出高危个体。我们在“天津医科大学慢性病队列”中的 348 名受试者(116 例病例和 232 例对照)中进行了一项巢式病例对照研究。所有受试者在基线时均无 CKD,随访 5 年,直至 2018 年 8 月。采用多变量 Cox 回归分析,我们发现了与 CKD 风险相关的五个非遗传风险因素。使用逻辑回归从英国生物银行和其他数据库的 GWAS 分析中选择单核苷酸多态性(SNP)。我们使用逻辑回归模型和自然对数 OR 值加权来建立 CKD 遗传/非遗传风险预测模型。此外,最终的综合预测模型是两个最佳模型的算术和。预测模型的 AUC 达到 0.894,而灵敏度为 0.827,特异性为 0.801。我们发现年龄、糖尿病以及尿素氮、TGF-β和 ADMA 的正常高值是 CKD 的独立危险因素。还建立了综合预测模型,它可能有助于早期识别最有可能发生 CKD 的个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa8b/8854510/b2ea4827ddf1/41598_2022_6665_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验