Suppr超能文献

水中新兴污染物二甲双胍通过染色体诱变促进大肠杆菌产生多重抗生素耐药性。

Emerging pollutant metformin in water promotes the development of multiple-antibiotic resistance in Escherichia coli via chromosome mutagenesis.

机构信息

Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China.

Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No.1 Dali Road, Tianjin 300050, China.

出版信息

J Hazard Mater. 2022 May 15;430:128474. doi: 10.1016/j.jhazmat.2022.128474. Epub 2022 Feb 11.

Abstract

Antibiotics are known to be key drivers of antibiotic resistance and antibiotic resistance gene transmission. However, the contribution of the emerging pollutant metformin in facilitating antibiotic resistance remains unclear. In this study, Escherichia coli K12 (E. coli) was exposed to metformin at concentrations ranging from 10 to 200 mg/L, and antibiotic susceptibility test of isolated mutants was evaluated. DNA and RNA sequencing and real-time quantitative PCR (qPCR) were performed to identify the underlying mechanisms. The results showed metformin concentrations ranging from 10 to 200 mg/L caused multiple-antibiotic resistance in E. coli. After 1 day exposure to metformin at 1 ng/L, the mutation frequency in E. coli increased to 1.24 × 10, and it further increased to 7.13 × 10 when prolonged to 5 days. And the mutants showed multiple-antibiotic resistance. Whole-genome DNA analysis of mutants showed chromosome mutagenesis in marR, tonB, and fhuA. Global transcriptional analysis and qPCR revealed the expressions of emrK, emrY, cusB, cusC, hycA, cecR, marA, acrA, and acrB were upregulated and those of tonB and fhuA were significantly downregulated. Thus, an increase in efflux systems AcrAB-TolC, EmrKY-TolC, and CusCFBA together with a decrease in FhuA-TonB protein complex play vital roles in the multiple-antibiotic resistance induced by metformin.

摘要

抗生素是抗生素耐药性和抗生素耐药基因传播的主要驱动因素。然而,新兴污染物二甲双胍在促进抗生素耐药性方面的作用尚不清楚。在这项研究中,大肠杆菌 K12(E. coli)在浓度范围为 10 至 200mg/L 的二甲双胍中暴露,评估分离突变体的抗生素敏感性测试。进行 DNA 和 RNA 测序和实时定量 PCR(qPCR)以确定潜在机制。结果表明,浓度范围为 10 至 200mg/L 的二甲双胍导致大肠杆菌产生多种抗生素耐药性。在 1ng/L 的二甲双胍暴露 1 天后,大肠杆菌的突变频率增加到 1.24×10-7,当延长至 5 天时,它进一步增加到 7.13×10-7。并且突变体表现出多种抗生素耐药性。突变体的全基因组 DNA 分析显示 marR、tonB 和 fhuA 染色体发生突变。全局转录分析和 qPCR 显示 emrK、emrY、cusB、cusC、hycA、cecR、marA、acrA 和 acrB 的表达上调,而 tonB 和 fhuA 的表达明显下调。因此,外排系统 AcrAB-TolC、EmrKY-TolC 和 CusCFBA 的增加以及 FhuA-TonB 蛋白复合物的减少在二甲双胍诱导的多种抗生素耐药性中起重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验