Suppr超能文献

食品和饲料中真菌毒素污染数据的基本描述符。

Essential descriptors for mycotoxin contamination data in food and feed.

机构信息

Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Department of Nutrition and Dietetics, Faculty of Public Health, Jimma University, Jimma, Ethiopia; Department of Human Nutrition, College of Agriculture, Hawassa University, Hawassa, Ethiopia.

Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; MYTOX-SOUTH® International Thematic Network, Ghent University, Ghent, Belgium.

出版信息

Food Res Int. 2022 Feb;152:110883. doi: 10.1016/j.foodres.2021.110883. Epub 2021 Dec 20.

Abstract

Mycotoxin food contamination data is scattered, isolated, and poorly described. Reporting mycotoxin contamination data in a standardized manner is essential for collaborative research and integrated large-scale data analysis. The present study aimed to complement the existing European Food Safety Authority (EFSA) and Global Environment Monitoring System (GEMS) mycotoxin contamination data descriptors for application in low- and middle-income countries in particular. A three-round Delphi process was followed to establish a consensus on the missing descriptors. An invitation letter was first sent to 34 mycotoxin experts of an international collaboration of MYTOX-SOUTH®, of which 12 finally participated in the study. The response rate was 29.4% (10/34) in the Delphi I, 75% (9/12) in the Delphi II, and 83.3% (10/12) in the Delphi III rounds. The majority of the Delphi study participants were professors from 6 universities. Twenty-two descriptors (17 study level, 1 sample level, and 4 assay level) were proposed and were mainly related to pre and post-harvest periods of a food/feed sample. The pre-defined (>70% in the Delphi II and > 80% in the Delphi III) agreement among participants was achieved for all the proposed descriptors. The existing descriptors from EFSA (33) and GEMS (25) with the new proposed MYTOX-SOUTH® (22) descriptors, in total 80 descriptors, were arranged as study, sample, and assay categories and organized as a data submission template. Pre-testing of the template on three mycotoxin researchers indicated that the average time to fill out the form for a sample was 42 min. The current format helps mycotoxin contamination data to become more informative, reusable, and applicable especially to data from low- and middle-income countries. The above-proposed descriptors will help GEMS to provide technical cooperation with countries wishing to initiate and strengthen food contaminant monitoring programs. Similarly, the descriptors from the current study will be useful for EFSA as it regularly updates the Standard Sample Description. A standardized global reporting format for mycotoxin contamination data will enable national authorities to perform mycotoxins exposure and risk assessments and share data for international benchmarking. Standardized reporting and sharing of mycotoxin contamination data should be further advocated in ongoing research and become common practice in authorities, companies, academia, and other entities working on mycotoxin in food and feed.

摘要

真菌毒素食物污染数据分散、孤立且描述不完善。以标准化方式报告真菌毒素污染数据对于协作研究和综合大规模数据分析至关重要。本研究旨在补充欧洲食品安全局(EFSA)和全球环境监测系统(GEMS)现有的真菌毒素污染数据描述符,尤其适用于中低收入国家。采用三轮 Delphi 法就缺失的描述符达成共识。首先向 MYTOX-SOUTH®国际合作的 34 位真菌毒素专家发送了一封邀请信,其中 12 位最终参与了研究。Delphi I 中的回复率为 29.4%(34/116),Delphi II 为 75%(9/12),Delphi III 为 83.3%(10/12)。德尔福研究的大多数参与者是来自 6 所大学的教授。提出了 22 个描述符(17 个研究水平、1 个样本水平和 4 个检测水平),主要与食品/饲料样本的收获前和收获后时期有关。所有提议的描述符均达到了参与者定义的(Delphi II 中>70%,Delphi III 中>80%)共识。现有的 EFSA(33 个)和 GEMS(25 个)描述符与新提出的 MYTOX-SOUTH®(22 个)描述符一起,共 80 个描述符,按照研究、样本和检测类别排列,并组织成数据提交模板。对三位真菌毒素研究人员进行模板预测试表明,填写一个样本的表格平均用时为 42 分钟。目前的格式有助于使真菌毒素污染数据更具信息量、可重复使用,尤其适用于中低收入国家的数据。上述提出的描述符将有助于 GEMS 为希望启动和加强食物污染物监测计划的国家提供技术合作。同样,本研究中的描述符也将对 EFSA 有用,因为它会定期更新标准样本描述。真菌毒素污染数据的标准化全球报告格式将使国家当局能够进行真菌毒素暴露和风险评估,并为国际基准共享数据。应进一步倡导真菌毒素污染数据的标准化报告和共享,并使之成为从事食物和饲料中真菌毒素的当局、公司、学术界和其他实体的共同做法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验