Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada.
School of Geosciences, University of Edinburgh, Edinburgh, Scotland EH8 8AQ, United Kingdom.
Sci Total Environ. 2022 Jul 1;828:153944. doi: 10.1016/j.scitotenv.2022.153944. Epub 2022 Feb 19.
All nuclear energy producing nations face a common challenge associated with the long-term solution for their used nuclear fuel. After decades of research, many nuclear safety agencies worldwide agree that deep geological repositories (DGRs) are appropriate long-term solutions to protect the biosphere. The Canadian DGR is planned in either stable crystalline or sedimentary host rock (depending on the final site location) to house the used nuclear fuel in copper-coated used fuel containers (UFCs) surrounded by highly compacted bentonite. The copper-coating and bentonite provide robust protection against many corrosion processes anticipated in the DGR. However, it is possible that bisulfide (HS) produced near the host rock-bentonite interface may transport through the bentonite and corrode the UFCs during the DGR design life (i.e., one million years); although container performance assessments typically account for this process, while maintaining container integrity. Because the DGR design life far exceeds those of practical experimentation, there is a need for robust numerical models to forecast HS transport. In this paper we present the development of a coupled 3D thermal-hydraulic-chemical model to explore the impact of key coupled physics on HS transport in the proposed Canadian DGR. These simulations reveal that, although saturation delayed and heating accelerated HS transport over the first 100s and 10,000s of years, respectively, these times of influence were small compared to the long DGR design life. Consequently, the influence from heating only increased total projected HS corrosion by <20% and the influence from saturation had a negligible impact (<1%). By comparing the corrosion rate results with a simplified model, it was shown that nearly-steady DGR design parameters governed most of the projected HS corrosion. Therefore, those parameters need to be carefully resolved to reliably forecast the extent of HS corrosion.
所有核能生产国家都面临着一个共同的挑战,即如何为其用过的核燃料找到长期解决方案。经过几十年的研究,世界上许多核安全机构都认为,深层地质处置库(DGR)是保护生物圈的合适长期解决方案。加拿大的 DGR 计划建在稳定的结晶岩或沉积岩(取决于最终的厂址位置)中,用过的核燃料被储存在铜涂层的用过的燃料容器(UFC)中,周围是高度压实的膨润土。铜涂层和膨润土为 DGR 中预期的许多腐蚀过程提供了强大的保护。然而,在宿主岩石-膨润土界面附近产生的 可能会通过膨润土传输,并在 DGR 设计寿命(即一百万年)期间腐蚀 UFC;尽管容器性能评估通常考虑到了这一过程,同时保持容器的完整性。由于 DGR 的设计寿命远远超过实际实验的寿命,因此需要强大的数值模型来预测 HS 的传输。在本文中,我们提出了一种耦合的 3D 热-水力-化学模型的开发,以探索关键耦合物理对拟议中的加拿大 DGR 中 HS 传输的影响。这些模拟表明,尽管饱和度延迟和加热分别在最初的 100 秒和 10000 秒内加速了 HS 的传输,但与 DGR 的长设计寿命相比,这些影响时间很小。因此,加热的影响仅使总预测的 HS 腐蚀增加了<20%,而饱和度的影响可以忽略不计(<1%)。通过将腐蚀速率的结果与简化模型进行比较,表明 DGR 设计参数的近稳态控制了大部分预测的 HS 腐蚀。因此,需要仔细确定这些参数,以可靠地预测 HS 腐蚀的程度。