Suppr超能文献

贝叶斯层次模型在需求曲线个体参与者数据荟萃分析中的应用。

A Bayesian hierarchical model for individual participant data meta-analysis of demand curves.

机构信息

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.

Addiction Recovery Research Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.

出版信息

Stat Med. 2022 May 30;41(12):2276-2290. doi: 10.1002/sim.9354. Epub 2022 Feb 22.

Abstract

Individual participant data meta-analysis is a frequently used method to combine and contrast data from multiple independent studies. Bayesian hierarchical models are increasingly used to appropriately take into account potential heterogeneity between studies. In this paper, we propose a Bayesian hierarchical model for individual participant data generated from the Cigarette Purchase Task (CPT). Data from the CPT details how demand for cigarettes varies as a function of price, which is usually described as an exponential demand curve. As opposed to the conventional random-effects meta-analysis methods, Bayesian hierarchical models are able to estimate both the study-specific and population-level parameters simultaneously without relying on the normality assumptions. We applied the proposed model to a meta-analysis with baseline CPT data from six studies and compared the results from the proposed model and a two-step conventional random-effects meta-analysis approach. We conducted extensive simulation studies to investigate the performance of the proposed approach and discussed the benefits of using the Bayesian hierarchical model for individual participant data meta-analysis of demand curves.

摘要

个体参与者数据荟萃分析是一种常用于合并和对比来自多个独立研究的数据的方法。贝叶斯层次模型越来越多地被用来适当考虑研究之间潜在的异质性。在本文中,我们提出了一种用于从吸烟购买任务(CPT)中产生的个体参与者数据的贝叶斯层次模型。CPT 中的数据详细说明了香烟的需求如何随价格变化,这通常被描述为指数需求曲线。与传统的随机效应荟萃分析方法不同,贝叶斯层次模型能够同时估计研究特定和总体水平的参数,而无需依赖正态性假设。我们将提出的模型应用于一项荟萃分析,该分析包含来自六项研究的基线 CPT 数据,并比较了提出的模型和两步传统随机效应荟萃分析方法的结果。我们进行了广泛的模拟研究来研究所提出方法的性能,并讨论了使用贝叶斯层次模型进行需求曲线个体参与者数据荟萃分析的好处。

相似文献

1
A Bayesian hierarchical model for individual participant data meta-analysis of demand curves.
Stat Med. 2022 May 30;41(12):2276-2290. doi: 10.1002/sim.9354. Epub 2022 Feb 22.
2
A Bayesian meta-analytic approach for safety signal detection in randomized clinical trials.
Clin Trials. 2017 Apr;14(2):192-200. doi: 10.1177/1740774516683920. Epub 2017 Jan 6.
3
A Bayesian hierarchical model for demand curve analysis.
Stat Methods Med Res. 2018 Jul;27(7):2038-2049. doi: 10.1177/0962280216673675. Epub 2016 Oct 20.
5
Simulating demand for cigarettes among pregnant women: A Low-Risk method for studying vulnerable populations.
J Exp Anal Behav. 2017 Jan;107(1):176-190. doi: 10.1002/jeab.232. Epub 2016 Dec 21.
6
A Bayesian hierarchical model for demand curve analysis.
Stat Methods Med Res. 2018 Aug;27(8):2401-2412. doi: 10.1177/0962280216680651.
7
Behavioral economic measurement of cigarette demand: A descriptive review of published approaches to the cigarette purchase task.
Exp Clin Psychopharmacol. 2020 Dec;28(6):688-705. doi: 10.1037/pha0000347. Epub 2020 Jan 20.
8
Predicting decreases in smoking with a cigarette purchase task: evidence from an excise tax rise in New Zealand.
Tob Control. 2015 Nov;24(6):582-7. doi: 10.1136/tobaccocontrol-2014-051594. Epub 2014 Jul 22.
10
Bayesian hierarchical dose-response meta-analysis of epidemiological studies: Modeling and target population prediction methods.
Environ Int. 2020 Dec;145:106111. doi: 10.1016/j.envint.2020.106111. Epub 2020 Sep 21.

本文引用的文献

1
Testing small study effects in multivariate meta-analysis.
Biometrics. 2020 Dec;76(4):1240-1250. doi: 10.1111/biom.13342. Epub 2020 Aug 29.
3
Sensitivity of hypothetical purchase task indices when studying substance use: A systematic literature review.
Prev Med. 2019 Nov;128:105789. doi: 10.1016/j.ypmed.2019.105789. Epub 2019 Aug 7.
6
A Bayesian hierarchical model for demand curve analysis.
Stat Methods Med Res. 2018 Aug;27(8):2401-2412. doi: 10.1177/0962280216680651.
7
Methods for evidence synthesis in the case of very few studies.
Res Synth Methods. 2018 Sep;9(3):382-392. doi: 10.1002/jrsm.1297. Epub 2018 Apr 6.
8
Quantifying publication bias in meta-analysis.
Biometrics. 2018 Sep;74(3):785-794. doi: 10.1111/biom.12817. Epub 2017 Nov 15.
9
A two-part mixed effects model for cigarette purchase task data.
J Exp Anal Behav. 2016 Nov;106(3):242-253. doi: 10.1002/jeab.228.
10
Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ.
Stat Med. 2017 Feb 28;36(5):855-875. doi: 10.1002/sim.7141. Epub 2016 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验