Klajmon Martin, Červinka Ctirad
Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
J Phys Chem B. 2022 Mar 10;126(9):2005-2013. doi: 10.1021/acs.jpcb.1c10809. Epub 2022 Feb 23.
Molecular dynamics simulations are used for predictions of the glass transition temperatures for a test set of five aprotic ionic liquids. Glass transitions are localized with the trend-shift method, analyzing volumetric and transport properties of bulk amorphous phases. A classical nonpolarizable all-atom OPLS force-field model developed by Canongia Lopes and Pádua (CL&P) is employed as a starting level of theory for all calculations. Alternative approaches of charge scaling and the Drude oscillator model, accounting for atomic polarizability either implicitly or explicitly, respectively, are used to investigate the sensitivity of the glass transition temperatures to induction effects. The former nonpolarizable model overestimates the glass transition temperature by tens of Kelvins (37 K on average). The charge-scaling technique yields a significant improvement, and the best estimations were achieved using polarizable simulations with the Drude model, which yielded an average deviation of 11 K. Although the volumetric data usually exhibit a lesser trend shift upon vitrification, their lower statistical uncertainty enables to predict the glass transition temperature with lower uncertainty than the ionic self-diffusivities, the temperature dependence of which is usually more scattered. Additional analyses of the simulated data were also performed, revealing that the Drude model predicts lower densities for most subcooled liquids but higher densities for the glasses than the original CL&P, and that the Drude model also invokes some longer-range organization of the subcooled liquid, greatly impacting the temperature trend of ionic self-diffusivities in the low-temperature region.
分子动力学模拟用于预测一组包含五种非质子离子液体的测试集的玻璃化转变温度。玻璃化转变通过趋势转变方法定位,分析块状非晶相的体积和传输性质。由卡诺尼亚·洛佩斯和帕杜阿(CL&P)开发的经典非极化全原子OPLS力场模型被用作所有计算的初始理论水平。分别采用电荷缩放和德鲁德振子模型的替代方法,分别隐式或显式地考虑原子极化率,以研究玻璃化转变温度对诱导效应的敏感性。前一种非极化模型将玻璃化转变温度高估了几十开尔文(平均37 K)。电荷缩放技术带来了显著改进,使用德鲁德模型的极化模拟实现了最佳估计,平均偏差为11 K。尽管体积数据在玻璃化时通常表现出较小的趋势变化,但其较低的统计不确定性使得预测玻璃化转变温度时的不确定性低于离子自扩散系数,离子自扩散系数的温度依赖性通常更分散。还对模拟数据进行了额外分析,结果表明,与原始的CL&P相比,德鲁德模型预测大多数过冷液体的密度较低,但玻璃的密度较高,并且德鲁德模型还引发了过冷液体的一些长程有序,极大地影响了低温区域离子自扩散系数的温度趋势。