Suppr超能文献

基于伪目标域的多源无监督域自适应

Multi-Source Unsupervised Domain Adaptation via Pseudo Target Domain.

出版信息

IEEE Trans Image Process. 2022;31:2122-2135. doi: 10.1109/TIP.2022.3152052. Epub 2022 Mar 2.

Abstract

Multi-source domain adaptation (MDA) aims to transfer knowledge from multiple source domains to an unlabeled target domain. MDA is a challenging task due to the severe domain shift, which not only exists between target and source but also exists among diverse sources. Prior studies on MDA either estimate a mixed distribution of source domains or combine multiple single-source models, but few of them delve into the relevant information among diverse source domains. For this reason, we propose a novel MDA approach, termed Pseudo Target for MDA (PTMDA). Specifically, PTMDA maps each group of source and target domains into a group-specific subspace using adversarial learning with a metric constraint, and constructs a series of pseudo target domains correspondingly. Then we align the remainder source domains with the pseudo target domain in the subspace efficiently, which allows to exploit additional structured source information through the training on pseudo target domain and improves the performance on the real target domain. Besides, to improve the transferability of deep neural networks (DNNs), we replace the traditional batch normalization layer with an effective matching normalization layer, which enforces alignments in latent layers of DNNs and thus gains further promotion. We give theoretical analysis showing that PTMDA as a whole can reduce the target error bound and leads to a better approximation of the target risk in MDA settings. Extensive experiments demonstrate PTMDA's effectiveness on MDA tasks, as it outperforms state-of-the-art methods in most experimental settings.

摘要

多源域自适应 (MDA) 旨在将知识从多个源域转移到未标记的目标域。由于严重的域转移,MDA 是一项具有挑战性的任务,这种域转移不仅存在于目标域和源域之间,而且存在于不同的源域之间。以前关于 MDA 的研究要么估计源域的混合分布,要么组合多个单源模型,但很少有研究深入研究不同源域之间的相关信息。为此,我们提出了一种新的 MDA 方法,称为 MDA 中的伪目标 (PTMDA)。具体来说,PTMDA 使用带有度量约束的对抗学习将每组源域和目标域映射到特定于组的子空间中,并相应地构建一系列伪目标域。然后,我们在子空间中有效地对齐剩余的源域与伪目标域,这允许通过在伪目标域上训练来利用额外的结构化源信息,并提高在真实目标域上的性能。此外,为了提高深度神经网络 (DNN) 的可转移性,我们用有效的匹配归一化层替换传统的批量归一化层,这强制在 DNN 的潜在层中进行对齐,从而获得进一步的提升。我们给出了理论分析,表明 PTMDA 作为一个整体可以减少目标误差界限,并在 MDA 设置中导致更好的目标风险逼近。广泛的实验证明了 PTMDA 在 MDA 任务中的有效性,因为它在大多数实验设置中都优于最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验