Eijsvogel S, Sun L, Sepehripour F, Dilz R J, van Beurden M C
J Opt Soc Am A Opt Image Sci Vis. 2022 Jan 1;39(1):86-97. doi: 10.1364/JOSAA.438866.
In relation to the computation of electromagnetic scattering in layered media by the Gabor-frame-based spatial spectral Maxwell solver, we present two methods to compute the Gabor coefficients of the transverse cross section of three-dimensional scattering objects with high accuracy and efficiency. The first method employs the analytically obtained two-dimensional Fourier transform of the cross section of a scattering object, which we describe by two-dimensional characteristic functions, in combination with the traditional discrete Gabor transform method for computing the Gabor coefficients. The second method concerns the expansion of the so-called dual window function to compute the Gabor coefficients by employing the divergence theorem. Both methods utilize (semi)-analytical approaches to overcome the heavy oversampling requirement of the traditional discrete Gabor transform method in the case of discontinuous functions. Numerical results show significant improvement in terms of accuracy and computation time for these two methods against the traditional discrete Gabor transform method.
关于基于伽柏框架的空间谱麦克斯韦求解器计算分层介质中的电磁散射问题,我们提出了两种方法来高精度、高效率地计算三维散射物体横向截面的伽柏系数。第一种方法采用通过二维特征函数描述的散射物体截面的解析二维傅里叶变换,并结合传统离散伽柏变换方法来计算伽柏系数。第二种方法涉及所谓对偶窗函数的展开,通过应用散度定理来计算伽柏系数。这两种方法都利用(半)解析方法来克服传统离散伽柏变换方法在处理不连续函数时对过采样的大量需求。数值结果表明,相对于传统离散伽柏变换方法,这两种方法在精度和计算时间方面都有显著提高。