Lie Stener, Bruno Annalisa, Wong Lydia Helena, Etgar Lioz
Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore.
School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
ACS Appl Mater Interfaces. 2022 Mar 9;14(9):11339-11349. doi: 10.1021/acsami.1c22748. Epub 2022 Feb 24.
Semitransparent hybrid perovskites open up applications in windows and building-integrated photovoltaics. One way to achieve semitransparency is by thinning the perovskite film, which has several benefits such as cost efficiency and reduction of lead. However, this will result in a reduced light absorbance; therefore, to compromise this loss, it is possible to incorporate plasmonic metal nanostructures, which can trap incident light and locally amplify the electromagnetic field around the resonance peaks. Here, Au nanorods (NRs), which are not detrimental for the perovskite and whose resonance peak overlaps with the perovskite band gap, are deposited on top of a thin (∼200 nm) semitransparent perovskite film. These semitransparent perovskite solar cells with 27% average visible transparency show enhancement in the open-circuit voltage () and fill factor, demonstrating 13.7% efficiency (improved by ∼6% compared to reference cells). Space-charge limited current, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analyses shed more light on the trap density, nonradiative recombination, and defect density in these Au NR post-treated semitransparent perovskite solar cells. Furthermore, Au NR implementation enhances the stability of the solar cell under ambient conditions. These findings show the ability to compensate for the light harvesting of semitransparent perovskites using the plasmonic effect.
半透明混合钙钛矿为窗户和建筑一体化光伏领域带来了应用前景。实现半透明的一种方法是减薄钙钛矿薄膜,这具有成本效益和减少铅含量等诸多优点。然而,这会导致光吸收率降低;因此,为了弥补这种损失,可以引入等离子体金属纳米结构,其能够捕获入射光并在共振峰周围局部增强电磁场。在此,将对钙钛矿无害且共振峰与钙钛矿带隙重叠的金纳米棒(NRs)沉积在薄(约200 nm)的半透明钙钛矿薄膜顶部。这些平均可见光透明度为27%的半透明钙钛矿太阳能电池在开路电压()和填充因子方面有所提高,效率达到13.7%(与参考电池相比提高了约6%)。空间电荷限制电流、电化学阻抗谱(EIS)和莫特-肖特基分析进一步揭示了这些金纳米棒后处理的半透明钙钛矿太阳能电池中的陷阱密度、非辐射复合和缺陷密度。此外,金纳米棒的应用增强了太阳能电池在环境条件下的稳定性。这些发现表明利用等离子体效应能够弥补半透明钙钛矿的光捕获能力。