Suppr超能文献

变化环境光照条件下稳态非视距定位的计算框架。

Computational framework for steady-state NLOS localization under changing ambient illumination conditions.

作者信息

Cao Yanpeng, Liang Rui, Yang Jiangxin, Cao Yanlong, He Zewei, Chen Jian, Li Xin

出版信息

Opt Express. 2022 Jan 17;30(2):2438-2452. doi: 10.1364/OE.444080.

Abstract

Non-line-of-sight (NLOS) imaging of hidden objects is a challenging yet vital task, facilitating important applications such as rescue operations, medical imaging, and autonomous driving. In this paper, we attempt to develop a computational steady-state NLOS localization framework that works accurately and robustly under various illumination conditions. For this purpose, we build a physical NLOS image acquisition hardware system and a corresponding virtual setup to obtain real-captured and simulated steady-state NLOS images under different ambient illuminations. Then, we utilize the captured NLOS images to train/fine-tune a multi-task convolutional neural network (CNN) architecture to perform simultaneous background illumination correction and NLOS object localization. Evaluation results on both stimulated and real-captured NLOS images demonstrate that the proposed method can effectively suppress severe disturbance caused by the variation of ambient light, significantly improving the accuracy and stability of steady-state NLOS localization using consumer-grade RGB cameras. The proposed method potentially paves the way to develop practical steady-state NLOS imaging solutions for around-the-clock and all-weather operations.

摘要

隐藏物体的非视距(NLOS)成像是一项具有挑战性但至关重要的任务,它推动了诸如救援行动、医学成像和自动驾驶等重要应用的发展。在本文中,我们试图开发一种计算稳态NLOS定位框架,该框架在各种光照条件下都能准确且稳健地工作。为此,我们构建了一个物理NLOS图像采集硬件系统和一个相应的虚拟设置,以获取在不同环境光照下实际捕获的和模拟的稳态NLOS图像。然后,我们利用捕获的NLOS图像来训练/微调一个多任务卷积神经网络(CNN)架构,以同时进行背景光照校正和NLOS物体定位。对模拟和实际捕获的NLOS图像的评估结果表明,所提出的方法能够有效抑制由环境光变化引起的严重干扰,显著提高使用消费级RGB相机进行稳态NLOS定位的准确性和稳定性。所提出的方法有可能为全天候和全天气作业开发实用的稳态NLOS成像解决方案铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验