Hu Kai-Yu, Yang Chunxia, Sun Wenjing
Aerospace Software Evaluation Center, Beijing Jinghang Institute of Computing and Communication, Beijing 100074, China.
Applied Mathematics Research Center, China Aerospace Science and Industry Corporation, Beijing 100074, China.
Sensors (Basel). 2022 Feb 16;22(4):1523. doi: 10.3390/s22041523.
This paper investigates the sensor fault detection and fault-tolerant control (FTC) technology of a variable-structure hypersonic flight vehicle (HFV). First, an HFV nonlinear system considering sensor compound faults, disturbance, and the variable structure parameter is established, which is divided into the attitude angle outer and angular rate inner loops. Then a nonlinear fault integrated detector is proposed to detect the moment of fault occurrence and provide the residual to design the sliding mode equations. Furthermore, the sliding mode method combined with the virtual adaptive controller constitutes the outer loop FTC scheme, and the adaptive dynamic surface combined with the disturbance estimation constitutes the inner loop robust controller; these controllers finally realize the direct compensation of the compound sensor faults under the disturbance condition. This scheme does not require fault isolation and diagnosis observer loops; it only uses a variable structure FTC with a direct estimation algorithm and integrated residual to complete the self-repairing stable flight of variable-structure HFV, which exhibits a high reliability and quick response. Lyapunov theory proved the stability of the system, and numerical simulation proved the effectiveness of the FTC scheme.
本文研究了可变结构高超声速飞行器(HFV)的传感器故障检测与容错控制(FTC)技术。首先,建立了一个考虑传感器复合故障、干扰和可变结构参数的HFV非线性系统,该系统分为姿态角外环和角速率内环。然后提出了一种非线性故障综合检测器,用于检测故障发生时刻并提供残差以设计滑模方程。此外,滑模方法与虚拟自适应控制器相结合构成外环FTC方案,自适应动态面与干扰估计相结合构成内环鲁棒控制器;这些控制器最终实现了在干扰条件下复合传感器故障的直接补偿。该方案不需要故障隔离和诊断观测器回路;它仅使用具有直接估计算法和综合残差的可变结构FTC来完成可变结构HFV的自修复稳定飞行,具有高可靠性和快速响应性。李雅普诺夫理论证明了系统的稳定性,数值仿真验证了FTC方案的有效性。