Suppr超能文献

基于对应函数稳健估计的臀面印记比较方法。

Approach to breech face impression comparison based on the robust estimation of a correspondence function.

作者信息

Zhang Hao, Zaman Robin Ashraf Uz, Zhu Jialing, Lu Chenfei, Fang Chenggang, Shyha Islam

机构信息

School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, China.

School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK.

出版信息

Forensic Sci Int. 2022 Apr;333:111229. doi: 10.1016/j.forsciint.2022.111229. Epub 2022 Feb 11.

Abstract

Forensic firearm analysis concerns an attempt to determine if ammunition is associated with a specific firearm based on tool-marks produced by it. A feature-based method using the Scale Invariant Feature Transform (SIFT) and RANdom SAmple Consensus (RANSAC) integration algorithm had been suggested to allow the automated comparison of breech face impressions. In this paper, an estimation method is proposed to establish a correspondence function among the features of comparison impression pairs, aiming to further improve the robustness and repeatability of automated feature matching. During the application of the iterative establishment algorithm, the Support Vector Regression (SVR) method is repeated to estimate the correspondence function based on current feature correspondences, and a robust weighting method excludes egregious outliers among putative correspondences by updating additional weightings. Moreover, the consistency detection method is adopted to overcome the over-fitting problem in SVR. Validation tests of the proposed method are conducted on three sets of cartridge case's breech face impressions; namely the Fadul set consisting of 40 cartridge cases ejected from 10 Ruger P95PR15 pistols, the Weller sets containing 95 cartridge cases obtained from 11 Ruger P95DC firearms and the Lightstone set containing 30 cartridge cases from 10 SW40VE S&W Sigma pistol slides. Test results show that most known matching (KM) pairs possess no less than 20 matching feature points while the non-matching (KNM) pairs all maintain 3-8 correspondences. It also indicates that the feature-based method has apparent advantages in dealing with granular impressions with local peaks and valleys features, and poor performance on the striation marks. The clear distinction between KM and KNM impression pairs demonstrates the feasibility of the proposed method in ballistic feature comparison. Compared to the random hypothesize-and-verify modeling of RANSAC, this method can retain more reliable matching feature points of the impression pair to ensure the repeatability of feature correspondence selection.

摘要

法医枪支分析旨在根据特定枪支产生的工具痕迹来确定弹药是否与该枪支相关联。有人提出了一种基于尺度不变特征变换(SIFT)和随机抽样一致性(RANSAC)集成算法的基于特征的方法,以实现枪膛表面印记的自动比对。本文提出了一种估计方法,用于在比对印记对的特征之间建立对应函数,旨在进一步提高自动特征匹配的鲁棒性和可重复性。在迭代建立算法的应用过程中,重复使用支持向量回归(SVR)方法,根据当前的特征对应关系估计对应函数,并且一种鲁棒加权方法通过更新附加权重来排除假定对应关系中的异常值。此外,采用一致性检测方法来克服SVR中的过拟合问题。在所提出方法的验证测试中,对三组弹壳的枪膛表面印记进行了测试;即由从10把鲁格P95PR15手枪射出的40个弹壳组成的法杜尔组、包含从11把鲁格P95DC枪支获得的95个弹壳的韦勒组以及包含从10个SW40VE史密斯威森西格玛手枪滑套取出的30个弹壳的莱特斯通组。测试结果表明,大多数已知匹配(KM)对拥有不少于20个匹配特征点,而非匹配(KNM)对都保持3 - 8个对应关系。这也表明基于特征的方法在处理具有局部峰谷特征的颗粒状印记方面具有明显优势,而在条纹痕迹方面表现不佳。KM和KNM印记对之间的明显区分证明了所提出方法在弹道特征比对中的可行性。与RANSAC的随机假设和验证建模相比,该方法可以保留印记对中更可靠的匹配特征点,以确保特征对应选择的可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验