Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
Small. 2022 Apr;18(15):e2106887. doi: 10.1002/smll.202106887. Epub 2022 Feb 27.
Microporous mesh plasmonic devices have the potential to combine the biocompatibility of microporous polymeric meshes with the capabilities of plasmonic nanostructures to enhance nanoscale light-matter interactions for bio-interfaced optical sensing and actuation. However, scalable integration of dense and uniformly structured plasmonic hotspot arrays with microporous polymeric meshes remains challenging due to the processing incompatibility of conventional nanofabrication methods with flexible microporous substrates. Here, scalable nanofabrication of microporous multiresonant plasmonic meshes (MMPMs) is achieved via a hierarchical micro-/nanoimprint lithography approach using dissolvable polymeric templates. It is demonstrated that MMPMs can serve as broadband nonlinear nanoplasmonic devices to generate second-harmonic generation, third-harmonic generation, and upconversion photoluminescence signals with multiresonant plasmonic enhancement under fs pulse excitation. Moreover, MMPMs are employed and explored as bio-interfaced surface-enhanced Raman spectroscopy mesh sensors to enable in situ spatiotemporal molecular profiling of bacterial biofilm activity. Microporous mesh plasmonic devices open exciting avenues for bio-interfaced optical sensing and actuation applications, such as inflammation-free epidermal sensors in conformal contact with skin, combined tissue-engineering and biosensing scaffolds for in vitro 3D cell culture models, and minimally invasive implantable probes for long-term disease diagnostics and therapeutics.
微孔网格等离子体器件具有将微孔聚合物网格的生物相容性与等离子体纳米结构的功能相结合的潜力,从而增强纳米级光物质相互作用,用于生物界面光学传感和致动。然而,由于传统纳米制造方法与柔性微孔基底的加工不兼容,因此难以将密集且均匀结构的等离子体热点阵列与微孔聚合物网格进行可扩展的集成。在此,通过使用可溶解的聚合物模板的分层微/纳米压印光刻方法,实现了微孔多共振等离子体网格 (MMPM) 的可扩展纳米制造。结果表明,MMPM 可用作宽带非线性纳米等离子体器件,在飞秒脉冲激发下,通过多共振等离子体增强,可产生二次谐波产生、三次谐波产生和上转换光致发光信号。此外,MMPM 被用作生物界面表面增强拉曼光谱网格传感器,以实现细菌生物膜活性的原位时空分子分析。微孔网格等离子体器件为生物界面光学传感和致动应用开辟了令人兴奋的途径,例如与皮肤紧密贴合的无炎症表皮传感器、用于体外 3D 细胞培养模型的组织工程和生物传感支架,以及用于长期疾病诊断和治疗的微创植入式探头。