Suppr超能文献

用于溢油清理的椰子油和发酵棕榈酒生物柴油生产:实验、数值和混合元启发式建模方法

Coconut oil and fermented palm wine biodiesel production for oil spill cleanup: experimental, numerical, and hybrid metaheuristic modeling approaches.

作者信息

Brantson Eric Thompson, Osei Harrison, Aidoo Mark Shalom Kwesi, Appau Prince Opoku, Issaka Fuseini Naziru, Liu Nannan, Ejeh Chukwugozie Jekwu, Kouamelan Kouamelan Serge

机构信息

Department of Petroleum and Natural Gas Engineering, GNPC School of Petroleum Studies, University of Mines and Technology, Tarkwa, Ghana.

Department of Petroleum Engineering, University of North Dakota, Grand Forks, ND, 58202, USA.

出版信息

Environ Sci Pollut Res Int. 2022 Jul;29(33):50147-50165. doi: 10.1007/s11356-022-19426-1. Epub 2022 Feb 28.

Abstract

This paper for the first time synthesizes novel biodiesel experimentally using low-cost feedstocks of coconut oil, caustic soda, and fermented palm wine contaminated by microorganisms. The alkaline catalyzed transesterification method was used for biodiesel production with minimal glycerol. The produced biodiesel was biodegradable and effective in cleaning a shoreline oil spill experiment verified by our developed oil spill radial numerical simulator. For the first time, an adaptive neuro-fuzzy inference system (ANFIS) was hybridized with invasive weed optimization (IWO), imperialist competitive algorithm (ICA), and shuffled complex evolution (SCE-UA) to predict biodiesel yield (BY) using obtained Monte Carlo simulation datasets from the biodiesel experimental seed data. The test results indicated ANFIS-IWO (MSE = 0.0628) as the best model and also when compared to the benchmarked ANFIS genetic algorithm (MSE = 0.0639). Additionally, ANFIS-IWO (RMSE = 0.54705) was tested on another coconut biodiesel data in the literature and it outperformed both response surface methodology (RMSE = 0.72739) and artificial neural network (RMSE = 0.68615) models used. The hybridized models proved to be robust for biodiesel yield modeling in addition to the produced biodiesel serving as an environmentally acceptable and cost-effective alternative for shoreline bioremediation.

摘要

本文首次通过实验,使用低成本原料椰子油、烧碱和受微生物污染的发酵棕榈酒合成了新型生物柴油。采用碱性催化酯交换法生产生物柴油,甘油含量最低。所生产的生物柴油具有生物降解性,并且在我们开发的溢油径向数值模拟器验证的海岸线溢油清理实验中效果良好。首次将自适应神经模糊推理系统(ANFIS)与入侵杂草优化算法(IWO)、帝国主义竞争算法(ICA)和洗牌复合进化算法(SCE-UA)相结合,利用从生物柴油实验种子数据获得的蒙特卡罗模拟数据集来预测生物柴油产量(BY)。测试结果表明,ANFIS-IWO(均方误差MSE = 0.0628)是最佳模型,与基准的ANFIS遗传算法(MSE = 0.0639)相比也是如此。此外,ANFIS-IWO(均方根误差RMSE = 0.54705)在文献中的另一个椰子生物柴油数据上进行了测试,其性能优于所使用的响应面方法(RMSE = 0.72739)和人工神经网络(RMSE = 0.68615)模型。除了所生产的生物柴油可作为海岸线生物修复的环境可接受且具有成本效益的替代方案外,这些杂交模型还被证明在生物柴油产量建模方面具有鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验