Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France.
Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France.
J Mech Behav Biomed Mater. 2022 Apr;128:105118. doi: 10.1016/j.jmbbm.2022.105118. Epub 2022 Feb 16.
Composed of collagen, elastin and muscular fibrous networks, vocal folds are soft laryngeal multi-layered tissues owning remarkable vibro-mechanical performances. However, the impact of their histological features on their overall mechanical properties still remains elusive. Thereby, this study presents a micro-mechanical hyperelastic model able to describe the 3D fibrous architecture and the surrounding matrices of the vocal-fold sublayers, and to predict their mechanical behavior. For each layer, the model parameters were identified using available histo-mechanical data, including their quasi-static response for key physiological loading paths, i.e., longitudinal tension, transverse compression and longitudinal shear. Regardless of the loading path, it is shown how macroscale nonlinear, anisotropic tissue responses are inherited from the fiber scale. Scenarios of micro-mechanisms are predicted, highlighting the major role of 3D fiber orientation in tension, steric hindrance in compression, and matrix contribution in shear. Finally, combining these predictions to vibrating hyperelastic Timoshenko beam's theory, the impact of the fibrous architecture of the upper layers on vocal-fold vibratory properties is emphasized.
由胶原蛋白、弹性蛋白和肌肉纤维网络组成,声带是具有显著的振动机械性能的柔软的喉多层组织。然而,它们的组织学特征对其整体力学性能的影响仍然难以捉摸。因此,本研究提出了一种微机械超弹性模型,能够描述声带亚层的 3D 纤维结构和周围基质,并预测它们的力学行为。对于每个层,使用可用的组织力学数据来确定模型参数,包括它们在关键生理加载路径(即纵向拉伸、横向压缩和纵向剪切)下的准静态响应。无论加载路径如何,都表明宏观非线性、各向异性的组织响应是如何从纤维尺度继承而来的。预测了微观机制的情况,强调了 3D 纤维方向在拉伸中的主要作用、压缩中的空间阻碍以及剪切中的基质贡献。最后,将这些预测与振动超弹性铁木辛柯梁理论相结合,强调了上层纤维结构对声带振动特性的影响。