Suppr超能文献

获取手术数据:质量改进登记系统与自然语言处理及手工病历审查的比较

Capturing Surgical Data: Comparing a Quality Improvement Registry to Natural Language Processing and Manual Chart Review.

作者信息

Miller Benjamin T, Fafaj Aldo, Tastaldi Luciano, Alkhatib Hemasat, Zolin Samuel, AlMarzooqi Raha, Tu Chao, Alaedeen Diya, Prabhu Ajita S, Krpata David M, Rosen Michael J, Petro Clayton C

机构信息

Cleveland Clinic Center for Abdominal Core Health, Department of General Surgery, Digestive Disease and Surgery Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, A-100, Cleveland, OH, 44195, USA.

Department of Quantitative Health Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.

出版信息

J Gastrointest Surg. 2022 Jul;26(7):1490-1494. doi: 10.1007/s11605-022-05282-4. Epub 2022 Feb 28.

Abstract

INTRODUCTION

Collecting accurate operative details remains a limitation of surgical research. Surgeon-entered data in clinical registries offers one solution, but natural language processing (NLP) has emerged as a modality for automating manual chart review (MCR). This study aims to compare the accuracy and efficiency of NLP and MCR with a surgeon-entered, prospective registry data in determining the rate of gross bile spillage (GBS) during cholecystectomy.

METHODS

Bile spillage rates were abstracted from an institutional, surgeon-entered clinical registry from July 2018 to January 2019. These rates were compared to those documented in the electronic medical record (EMR) using NLP and MCR to determine the sensitivity, specificity, and efficiency of each approach.

RESULTS

Of the 782 registry entries, 191 cases (24.4%) had surgeon-reported bile spillage. MCR identified bile spillage in 121 cases (15.6%); however, bile spillage information was either missing or ambiguous in 454 cases (58.1%). NLP identified 99 cases (12.7%) of bile spillage. Data abstraction times for the registry, NLP, and MCR were 3 min, 5 min, and 12 h, respectively. When compared to the registry, MCR was 45% sensitive and 94% specific, while NLP was 27.2% sensitive and 92% specific for detecting bile spillage. These differences were significant (X = 19.446, P =  < 0.001).

CONCLUSION

Operative details, such as GBS, may not be abstracted by NLP or MCR if not clearly documented in the EMR. Clinical registries capture operative details, but they rely on surgeons to input the data.

摘要

引言

收集准确的手术细节仍是外科研究的一个局限。临床登记系统中由外科医生录入的数据提供了一种解决方案,但自然语言处理(NLP)已成为一种自动执行人工病历审查(MCR)的方式。本研究旨在比较NLP和MCR与外科医生录入的前瞻性登记数据在确定胆囊切除术中总胆汁渗漏(GBS)发生率方面的准确性和效率。

方法

从2018年7月至2019年1月的机构性、外科医生录入的临床登记系统中提取胆汁渗漏率。将这些比率与使用NLP和MCR在电子病历(EMR)中记录的比率进行比较,以确定每种方法的敏感性、特异性和效率。

结果

在782条登记记录中,191例(24.4%)有外科医生报告的胆汁渗漏。MCR识别出121例(15.6%)胆汁渗漏;然而,454例(58.1%)病例中胆汁渗漏信息缺失或不明确。NLP识别出99例(12.7%)胆汁渗漏。登记系统、NLP和MCR的数据提取时间分别为3分钟、5分钟和12小时。与登记系统相比,MCR检测胆汁渗漏的敏感性为45%,特异性为94%,而NLP的敏感性为27.2%,特异性为92%。这些差异具有统计学意义(X = 19.446,P = < 0.001)。

结论

如果EMR中未明确记录,NLP或MCR可能无法提取诸如GBS等手术细节。临床登记系统可捕获手术细节,但它们依赖外科医生输入数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验