Suppr超能文献

基于金属有机框架的分子捕集器选择性去除高铼酸盐/高锝酸盐

Selective perrhenate/pertechnetate removal by a MOF-based molecular trap.

作者信息

Ming Mei, Zhou Hang, Mao Yi-Ning, Li Hai-Ruo, Chen Jing

机构信息

College of Basic Science, Tianjin Agricultural University, Tianjin 300392, P. R. China.

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.

出版信息

Dalton Trans. 2022 Mar 15;51(11):4458-4465. doi: 10.1039/d1dt04175d.

Abstract

A rational design of anion-exchange materials for the selective elimination of radioactive anionic contaminants poses a great challenge. Rather than relying on a size-compatible effect, the combination of a nano-sieve pore, hydrophobic cationic cavity, and soft-acidic open metal sites within one sorbent is an emerging strategy for meeting the requirement. Here, we designed a porous cationic Ag(I) metal-organic framework (MOF), TNU-132, which combined multiple features and showed superior perrhenate/pertechnetate capture selectivity in the presence of a large excess of 300-fold NO and 2000-fold SO. The mechanism of this high selectivity can be well elucidated by the anion exchange experiments of TNU-132 in the CrO/ReO mixture. That is, the separation process underwent two sequential steps, the nano-sieving procedure and then a reconstruction process in the crystalline sorbent. These results were further confirmed by scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS), and/or single-crystal X-ray diffraction (SC-XRD) of oxoanion-loaded materials.

摘要

合理设计用于选择性去除放射性阴离子污染物的阴离子交换材料面临着巨大挑战。不依赖尺寸兼容效应,在一种吸附剂中结合纳米筛孔、疏水阳离子腔和软酸性开放金属位点是满足这一要求的新兴策略。在此,我们设计了一种多孔阳离子Ag(I)金属有机框架(MOF),即TNU-132,它结合了多种特性,并且在存在大量过量300倍的NO和2000倍的SO的情况下,对高铼酸盐/高锝酸盐具有优异的捕获选择性。通过TNU-132在CrO/ReO混合物中的阴离子交换实验,可以很好地阐明这种高选择性的机制。也就是说,分离过程经历了两个连续步骤,即纳米筛分过程,然后是晶体吸附剂中的重构过程。负载含氧阴离子材料的扫描透射电子显微镜(STEM)、能量色散X射线光谱(EDS)和/或单晶X射线衍射(SC-XRD)进一步证实了这些结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验