Suppr超能文献

合成C-View™与智能二维™乳腺摄影术之间乳腺密度评估的比较。

Comparison of breast density assessments between synthesized C-View™ & intelligent 2D™ mammography.

作者信息

Khanani Sadia, Xiao Lekui, Jensen Matthew R, Conners Amy L, Fazzio Robert T, Hruska Carrie B, Winham Stacey, Wu Fang Fang, Scott Christopher G, Vachon Celine M

机构信息

Department of Radiology, Rochester, MN.

Department of Quantitative Health Sciences, Rochester, MN.

出版信息

Br J Radiol. 2022 Jun 1;95(1134):20211259. doi: 10.1259/bjr.20211259. Epub 2022 Mar 8.

Abstract

OBJECTIVE

To compare breast density assessments between C-View and Intelligent 2D, different generations of synthesized mammography (SM) from Hologic.

METHODS

In this retrospective study, we identified a subset of females between March 2017 and December 2019 who underwent screening digital breast tomosynthesis (DBT) with C-View followed by DBT with Intelligent 2D. Clinical Breast Imaging Reporting and Database System breast density was obtained along with volumetric breast density measures (including density grade, breast volume, percentage volumetric density, dense volume) using Volpara. Differences in density measures by type of synthesized image were calculated using the pairwise -test or McNemar's test, as appropriate.

RESULTS

67 patients (avg age 62.7; range 40-84) were included with an average of 13.3 months between the two exams. No difference was found in Breast Imaging Reporting and Database System density between the SM reconstructions ( = 0.74). Similarly, there was no difference in Volpara mean density grade ( = 0.71), mean breast volume ( = 0.48), mean dense volume ( = 0.43) or mean percent volumetric density ( = 0.12) between the exams.

CONCLUSION

We found no significant differences in clinical and automated breast density assessments between these two versions of SM.

ADVANCES IN KNOWLEDGE

Lack of differences in density estimates between the two SM reconstructions is important as density assignment impacts risk stratification and adjunct screening recommendations.

摘要

目的

比较Hologic公司不同代合成乳腺摄影(SM)产品C-View和Intelligent 2D之间的乳腺密度评估。

方法

在这项回顾性研究中,我们确定了2017年3月至2019年12月期间接受C-View筛查数字乳腺断层合成(DBT)检查,随后又接受Intelligent 2D DBT检查的女性子集。获取临床乳腺影像报告和数据系统的乳腺密度,并使用Volpara获得乳腺体积密度测量值(包括密度等级、乳腺体积、体积密度百分比、致密体积)。根据合成图像类型计算密度测量值的差异,酌情使用配对t检验或McNemar检验。

结果

纳入67例患者(平均年龄62.7岁;范围40-84岁),两次检查间隔平均为13.3个月。两种SM重建之间的乳腺影像报告和数据系统密度无差异(P = 0.74)。同样,两次检查之间的Volpara平均密度等级(P = 0.71)、平均乳腺体积(P = 0.48)、平均致密体积(P = 0.43)或平均体积密度百分比(P = 0.12)也无差异。

结论

我们发现这两种版本的SM在临床和自动乳腺密度评估方面无显著差异。

知识进展

两种SM重建之间密度估计无差异很重要,因为密度赋值会影响风险分层和辅助筛查建议。

相似文献

1
Comparison of breast density assessments between synthesized C-View™ & intelligent 2D™ mammography.
Br J Radiol. 2022 Jun 1;95(1134):20211259. doi: 10.1259/bjr.20211259. Epub 2022 Mar 8.
3
Breast Density and Breast Cancer Screening with Digital Breast Tomosynthesis: A TOSYMA Trial Subanalysis.
Radiology. 2023 Feb;306(2):e221006. doi: 10.1148/radiol.221006. Epub 2022 Oct 4.
4
Fully Automated Volumetric Breast Density Estimation from Digital Breast Tomosynthesis.
Radiology. 2021 Dec;301(3):561-568. doi: 10.1148/radiol.2021210190. Epub 2021 Sep 14.
6
10

本文引用的文献

2
Adoption of Digital Breast Tomosynthesis in Clinical Practice.
JAMA Intern Med. 2019 Sep 1;179(9):1292-1295. doi: 10.1001/jamainternmed.2019.1058.
4
Breast Cancer Screening Using Tomosynthesis or Mammography: A Meta-analysis of Cancer Detection and Recall.
J Natl Cancer Inst. 2018 Sep 1;110(9):942-949. doi: 10.1093/jnci/djy121.
6
Comparison Between Digital and Synthetic 2D Mammograms in Breast Density Interpretation.
AJR Am J Roentgenol. 2017 Jul;209(1):W36-W41. doi: 10.2214/AJR.16.16966. Epub 2017 May 15.
7
Imaging With Synthesized 2D Mammography: Differences, Advantages, and Pitfalls Compared With Digital Mammography.
AJR Am J Roentgenol. 2017 Jul;209(1):222-229. doi: 10.2214/AJR.16.17476. Epub 2017 May 2.
8
Digital Breast Tomosynthesis Practice Patterns Following 2011 FDA Approval: A Survey of Breast Imaging Radiologists.
Acad Radiol. 2017 Aug;24(8):947-953. doi: 10.1016/j.acra.2016.12.011. Epub 2017 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验