Suppr超能文献

应用曝光包围法简化避孕产品的研发。

Application of exposure bracketing to streamline the development of contraceptive products.

作者信息

Brown Joshua, Goodrow Tamra, Hartman Dan, Hay Justin L, Hershberger Kevin, Hershenson Susan, McNair Douglas, Matthews Bethany, Milad Mark A, Schmidt Stephan, Vogelsong Kirsten M, Zhao Ping

机构信息

College of Pharmacy, University of Florida, Gainsville, FL, United States.

Deer Run Regulatory Consulting, LLC, North Wales, PA, United States.

出版信息

Contracept X. 2022 Jan 30;4:100072. doi: 10.1016/j.conx.2022.100072. eCollection 2022.

Abstract

Developing new long-acting products of well-characterized contraceptive drugs is one way to address some of the reasons for unmet need for modern methods of family planning among women in low- and middle-income countries. Development and approval of such products traditionally follow a conventional paradigm that includes large Phase 3 clinical trials to evaluate efficacy (pregnancy prevention) and safety of the investigational product. Exposure-bracketing is a concept that applies known pharmacokinetics and pharmacodynamics of a drug substance to inform its safe and efficacious use in humans. Several therapeutic areas have applied this concept by leveraging established drug concentration-response relationships for approved products to expedite development and shorten the timeline for the approval of an investigational product containing the same drug substance. Based on discussions at a workshop hosted by the Bill & Melinda Gates Foundation in December 2020, it appears feasible to apply exposure-bracketing to develop novel contraceptive products using well-characterized drugs.

摘要

开发具有明确特征的长效避孕药新产品,是解决低收入和中等收入国家女性未满足的现代计划生育方法需求的部分原因的一种途径。此类产品的研发和批准传统上遵循一种常规模式,其中包括大规模的3期临床试验,以评估研究产品的疗效(预防怀孕)和安全性。暴露范围界定是一个概念,它应用已知药物的药代动力学和药效学来指导其在人体中的安全有效使用。几个治疗领域已经通过利用已批准产品的既定药物浓度-反应关系来应用这一概念,以加快研发速度并缩短含有相同药物的研究产品的批准时间线。基于比尔及梅琳达·盖茨基金会于2020年12月举办的一次研讨会的讨论,应用暴露范围界定来开发使用具有明确特征药物的新型避孕产品似乎是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b491/8857469/a2ccfe2ccef9/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验