Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil.
Clin Rev Allergy Immunol. 2022 Oct;63(2):251-288. doi: 10.1007/s12016-021-08918-6. Epub 2022 Mar 4.
Personalized medicine (PM) aims individualized approach to prevention, diagnosis, and treatment. Precision Medicine applies the paradigm of PM by defining groups of individuals with akin characteristics. Often the two terms have been used interchangeably. The quest for PM has been advancing for centuries as traditional nosology classification defines groups of clinical conditions with relatively similar prognoses and treatment options. However, any individual is characterized by a unique set of multiple characteristics and therefore the achievement of PM implies the determination of myriad demographic, epidemiological, clinical, laboratory, and imaging parameters. The accelerated identification of numerous biological variables associated with diverse health conditions contributes to the fulfillment of one of the pre-requisites for PM. The advent of multiplex analytical platforms contributes to the determination of thousands of biological parameters using minute amounts of serum or other biological matrixes. Finally, big data analysis and machine learning contribute to the processing and integration of the multiplexed data at the individual level, allowing for the personalized definition of susceptibility, diagnosis, prognosis, prevention, and treatment. Autoantibodies are traditional biomarkers for autoimmune diseases and can contribute to PM in many aspects, including identification of individuals at risk, early diagnosis, disease sub-phenotyping, definition of prognosis, and treatment, as well as monitoring disease activity. Herein we address how autoantibodies can promote PM in autoimmune diseases using the examples of systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, Sjögren syndrome, systemic sclerosis, idiopathic inflammatory myopathies, autoimmune hepatitis, primary biliary cholangitis, and autoimmune neurologic diseases.
个体化医学(PM)旨在针对预防、诊断和治疗采取个体化方法。精准医学通过定义具有相似特征的个体群体来应用 PM 的范例。这两个术语经常互换使用。几个世纪以来,人们一直在寻求 PM,因为传统的分类学定义了具有相对相似预后和治疗选择的临床病症群体。然而,任何个体都具有独特的一组多种特征,因此实现 PM 意味着要确定无数的人口统计学、流行病学、临床、实验室和影像学参数。与各种健康状况相关的大量生物变量的快速识别有助于实现 PM 的一个前提条件。多重分析平台的出现有助于使用少量血清或其他生物基质来确定数千种生物参数。最后,大数据分析和机器学习有助于在个体水平上处理和整合多重数据,从而可以针对个体的易感性、诊断、预后、预防和治疗进行个性化定义。自身抗体是自身免疫性疾病的传统生物标志物,在许多方面都可以促进 PM,包括识别高危个体、早期诊断、疾病亚表型、预后和治疗以及监测疾病活动。在此,我们将通过系统性红斑狼疮、抗磷脂综合征、类风湿关节炎、干燥综合征、系统性硬化症、特发性炎症性肌病、自身免疫性肝炎、原发性胆汁性胆管炎和自身免疫性神经疾病的例子来探讨自身抗体如何在自身免疫性疾病中促进 PM。