Suppr超能文献

金纳米粒子修饰的富铋溴氧化铋纳米管上的等离子体与位点之间的协同作用,用于高效光催化CC偶联合成乙烷。

Synergy between plasmonic and sites on gold nanoparticle-modified bismuth-rich bismuth oxybromide nanotubes for the efficient photocatalytic CC coupling synthesis of ethane.

作者信息

Wang Yu, Zhao Junze, Liu Yunmiao, Liu Gaopeng, Ding Shunmin, Li Yingjie, Xia Jiexiang, Li Huaming

机构信息

School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.

Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.

出版信息

J Colloid Interface Sci. 2022 Jun 15;616:649-658. doi: 10.1016/j.jcis.2022.02.109. Epub 2022 Feb 23.

Abstract

The photocatalytic reduction of carbon dioxide (CO) to fossil fuels has attracted widespread attention. However, obtaining the high value-added hydrocarbons, especially C products, remains a considerable challenge. Herein, gold (Au) nanoparticle-modified bismuth-rich bismuth oxybromide BiOBr nanotube composites were designed and tested. Au nanoparticles act as electron traps and thermal electron donors that promote the efficient separation and migration of carriers to form the C product. As a result, compared with the pure BiOBr nanotubes, Au@BiOBr composites can not only produce the carbon monoxide (CO) and methane (CH), but also covert CO into ethane (CH). In this study, Au@BiOBr-700 was used to obtain a CH production rate of 29.26 μmol h g. The selectivities during a 5-hour test reached 94.86% for hydrocarbons and 90.81% for CH. The proposed approach could be used to design high-performance photocatalysts to convert CO into high value-added hydrocarbon products.

摘要

将二氧化碳(CO₂)光催化还原为化石燃料已引起广泛关注。然而,获得高附加值的碳氢化合物,尤其是C₂产物,仍然是一个巨大的挑战。在此,设计并测试了金(Au)纳米颗粒修饰的富铋溴氧化铋BiOBr纳米管复合材料。Au纳米颗粒作为电子陷阱和热电子供体,促进载流子的有效分离和迁移以形成C₂产物。结果,与纯BiOBr纳米管相比,Au@BiOBr复合材料不仅能产生一氧化碳(CO)和甲烷(CH₄),还能将CO转化为乙烷(C₂H₆)。在本研究中,Au@BiOBr-700用于获得29.26 μmol h⁻¹ g⁻¹的C₂H₆产率。在5小时测试期间,碳氢化合物的选择性达到94.86%,C₂H₆的选择性达到90.81%。所提出的方法可用于设计高性能光催化剂,将CO₂转化为高附加值的碳氢化合物产品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验