Suppr超能文献

通过多元建模提高超临界流体色谱中的保留时间预测。

Improving retention-time prediction in supercritical-fluid chromatography by multivariate modelling.

机构信息

Van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands.

Van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands; TI-COAST, Science Park 904, Amsterdam 1098 XH, the Netherlands.

出版信息

J Chromatogr A. 2022 Apr 12;1668:462909. doi: 10.1016/j.chroma.2022.462909. Epub 2022 Feb 17.

Abstract

The prediction of chromatographic retention under supercritical-fluid chromatography (SFC) conditions was studied, using established and novel theoretical models over ranges of modifier content, pressure and temperature. Whereas retention models used for liquid chromatography often only consider the modifier fraction, retention in SFC depends much more strongly on pressure and temperature. The viability of combining several retention models into surfaces that describe the effects of both modifier fraction and pressure was investigated. The ability of commonly used retention models to describe retention as a function of modifier fraction, expressed either as mass or volume fraction, pressure and density was assessed. Using the multivariate surfaces, retention-time prediction for isocratic separations at constant temperature improved significantly compared to univariate modelling when both pressure and modifier fractions were changed. The "mixed-mode" model with an additional exponential pressure or density parameter was able to predict retention times within 5%, with the majority of the predictions within 2%. The use of mass fraction and density further improves retention modelling compared to volume fraction and pressure. These variables however, do require extra computations.

摘要

研究了在超临界流体色谱 (SFC) 条件下的色谱保留预测,使用已建立和新颖的理论模型在改性剂含量、压力和温度范围内进行了研究。虽然用于液相色谱的保留模型通常仅考虑改性剂分数,但 SFC 中的保留更多地取决于压力和温度。研究了将几种保留模型组合成描述改性剂分数和压力两者影响的曲面的可行性。评估了常用保留模型描述保留作为改性剂分数、质量或体积分数、压力和密度函数的能力。使用多元曲面,与仅对压力和改性剂分数进行单变量建模相比,当温度恒定时,对于等度分离的保留时间预测有了显著提高。具有附加指数压力或密度参数的“混合模式”模型能够在 5% 以内预测保留时间,大多数预测值在 2% 以内。与体积分数和压力相比,使用质量分数和密度进一步改善了保留模型。然而,这些变量需要额外的计算。

相似文献

1
Improving retention-time prediction in supercritical-fluid chromatography by multivariate modelling.
J Chromatogr A. 2022 Apr 12;1668:462909. doi: 10.1016/j.chroma.2022.462909. Epub 2022 Feb 17.
2
Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.
J Chromatogr A. 2016 Aug 12;1459:129-135. doi: 10.1016/j.chroma.2016.06.040. Epub 2016 Jun 16.
4
Effect of density on kinetic performance in supercritical fluid chromatography with methanol modified carbon dioxide.
J Chromatogr A. 2018 Aug 24;1564:188-198. doi: 10.1016/j.chroma.2018.06.021. Epub 2018 Jun 15.
7
Usual, unusual and unbelievable retention behavior in achiral supercritical fluid chromatography: Review and discussion.
J Chromatogr A. 2020 Mar 15;1614:460582. doi: 10.1016/j.chroma.2019.460582. Epub 2019 Oct 1.
9
Modelling of retention in analytical supercritical fluid chromatography for CO2-Methanol mobile phase.
J Chromatogr A. 2013 Aug 30;1305:285-92. doi: 10.1016/j.chroma.2013.06.069. Epub 2013 Jul 1.
10
Peak distortions arising from large-volume injections in supercritical fluid chromatography.
J Chromatogr A. 2015 May 1;1392:91-9. doi: 10.1016/j.chroma.2015.02.063. Epub 2015 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验