Center for Bionics and Pain Research, Göteborgsvägen 31, 431 80, Mölndal, Sweden; Dept. of Electrical Engineering, Chalmers University of Technology, Hörsalsvägen 11, 412 58, Gothenburg, Sweden; Integrum AB, Krokslätts Fabriker 50, 431 37, Mölndal, Sweden.
Center for Bionics and Pain Research, Göteborgsvägen 31, 431 80, Mölndal, Sweden; Dept. of Electrical Engineering, Chalmers University of Technology, Hörsalsvägen 11, 412 58, Gothenburg, Sweden; Operational Area 3, Sahlgrenska University Hospital, 431 30, Mölndal, Sweden; Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Göteborgsvägen 31, 431 80, Mölndal, Sweden.
J Mech Behav Biomed Mater. 2022 May;129:105148. doi: 10.1016/j.jmbbm.2022.105148. Epub 2022 Mar 1.
Skeletal attachment of limb prostheses ensures load transfer between the prosthetic leg and the skeleton. For individuals with lower limb amputation, these loads may be of substantial magnitude. To optimize the design of such systems, knowledge about the structural interplay between implant design features, dimensional changes, and material properties of the implant and the surrounding bone is needed. Here, we present the results from a parametric finite element investigation on a generic bone-anchored implant system of screw design, exposed to external loads corresponding to average and high ambulatory loading. Of the investigated parameters, cortical thickness had the largest effect on the stress and strain in the bone-anchored implant and in the cortical bone. 36%-44% reductions in maximum longitudinal stress in the bone-anchored implant was observed as a result of increased cortical thickness from 2 mm to 5 mm. A change in thread depth from 1.5 mm to 0.75 mm resulted in 20%-22% and 10%-18% reductions in maximum longitudinal stress in the bone-anchored implant at 2 mm and 5 mm cortical thickness respectively. The effect of changes in the thread root radius was less prominent, with 8% reduction in the maximum longitudinal stress in the bone-anchored implant being the largest observed effect, resulting from an increased thread root radius from 0.1 mm to 0.5 mm at a thread depth of 1.5 mm. Autologous transplantation of bone tissue distal to the fixture resulted in reductions in the longitudinal stress in the percutaneous abutment. The observed stress reduction of 10%-31% was dependent on the stiffness of the transplanted bone graft and the cortical thickness of surrounding bone. Results from this investigation may guide structural design optimization for bone-anchored implant systems for attachment of limb prostheses.
肢体假肢的骨骼附着确保了假肢腿和骨骼之间的负载传递。对于下肢截肢的个体,这些负载可能具有相当大的大小。为了优化此类系统的设计,需要了解植入物设计特征、尺寸变化以及植入物和周围骨骼的材料特性之间的结构相互作用。在这里,我们展示了对通用骨锚固植入物系统的参数有限元研究的结果,该系统暴露于对应于平均和高步行负载的外部负载下。在所研究的参数中,皮质厚度对骨锚固植入物和皮质骨中的应力和应变的影响最大。当皮质厚度从 2 毫米增加到 5 毫米时,骨锚固植入物中的最大纵向应力减少了 36%-44%。当螺纹深度从 1.5 毫米变为 0.75 毫米时,在 2 毫米和 5 毫米皮质厚度的骨锚固植入物中,最大纵向应力分别减少了 20%-22%和 10%-18%。螺纹根半径变化的影响不太明显,最大纵向应力在骨锚固植入物中的最大观察到的减少为 8%,这是由于在螺纹深度为 1.5 毫米时,螺纹根半径从 0.1 毫米增加到 0.5 毫米所致。在夹具远端自体移植骨组织会导致经皮基台中的纵向应力降低。观察到的 10%-31%的应力降低取决于移植骨移植物的刚度和周围骨的皮质厚度。该研究的结果可能指导用于肢体假肢附着的骨锚固植入物系统的结构设计优化。