文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Targeting a cryptic allosteric site of SIRT6 with small-molecule inhibitors that inhibit the migration of pancreatic cancer cells.

作者信息

Zhang Qiufen, Chen Yingyi, Ni Duan, Huang Zhimin, Wei Jiacheng, Feng Li, Su Jun-Cheng, Wei Yingqing, Ning Shaobo, Yang Xiuyan, Zhao Mingzhu, Qiu Yuran, Song Kun, Yu Zhengtian, Xu Jianrong, Li Xinyi, Lin Houwen, Lu Shaoyong, Zhang Jian

机构信息

State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.

Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

出版信息

Acta Pharm Sin B. 2022 Feb;12(2):876-889. doi: 10.1016/j.apsb.2021.06.015. Epub 2021 Jul 2.


DOI:10.1016/j.apsb.2021.06.015
PMID:35256952
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8897208/
Abstract

SIRT6 belongs to the conserved NAD-dependent deacetylase superfamily and mediates multiple biological and pathological processes. Targeting SIRT6 by allosteric modulators represents a novel direction for therapeutics, which can overcome the selectivity problem caused by the structural similarity of orthosteric sites among deacetylases. Here, developing a reversed allosteric strategy AlloReverse, we identified a cryptic allosteric site, Pocket Z, which was only induced by the bi-directional allosteric signal triggered upon orthosteric binding of NAD. Based on Pocket Z, we discovered an SIRT6 allosteric inhibitor named JYQ-42. JYQ-42 selectively targets SIRT6 among other histone deacetylases and effectively inhibits SIRT6 deacetylation, with an IC of 2.33 μmol/L. JYQ-42 significantly suppresses SIRT6-mediated cancer cell migration and pro-inflammatory cytokine production. JYQ-42, to our knowledge, is the most potent and selective allosteric SIRT6 inhibitor. This study provides a novel strategy for allosteric drug design and will help in the challenging development of therapeutic agents that can selectively bind SIRT6.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/feb0220ac9fb/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/7be42096efaa/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/4f4a84f4e331/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/dc7732a90c22/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/f25a44f7b4fd/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/e1ad3ab5d765/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/8fdd156493dc/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/77af1d95823e/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/feb0220ac9fb/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/7be42096efaa/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/4f4a84f4e331/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/dc7732a90c22/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/f25a44f7b4fd/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/e1ad3ab5d765/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/8fdd156493dc/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/77af1d95823e/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff41/8897208/feb0220ac9fb/gr7.jpg

相似文献

[1]
Targeting a cryptic allosteric site of SIRT6 with small-molecule inhibitors that inhibit the migration of pancreatic cancer cells.

Acta Pharm Sin B. 2022-2

[2]
Mechanism of allosteric activation of SIRT6 revealed by the action of rationally designed activators.

Acta Pharm Sin B. 2021-5

[3]
Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy.

Chem Sci. 2020-11-2

[4]
Discovery of a potent and highly selective inhibitor of SIRT6 against pancreatic cancer metastasis .

Acta Pharm Sin B. 2024-3

[5]
Small-molecule activating SIRT6 elicits therapeutic effects and synergistically promotes anti-tumor activity of vitamin D in colorectal cancer.

Theranostics. 2020

[6]
Mechanism of activation for the sirtuin 6 protein deacylase.

J Biol Chem. 2020-1-31

[7]
The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses.

J Biol Chem. 2012-10-18

[8]
Deciphering the Allosteric Activation Mechanism of SIRT6 Using Molecular Dynamics Simulations.

J Chem Inf Model. 2023-9-25

[9]
High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.

J Neurochem. 2016-5

[10]
Structure and biochemical functions of SIRT6.

J Biol Chem. 2011-3-1

引用本文的文献

[1]
Mechanistic basis of N-terminal domain-mediated allostery in SIRT6: integrating molecular dynamics simulations and biochemical assays.

Mol Divers. 2025-8-30

[2]
Role of artificial intelligence in revolutionizing drug discovery.

Fundam Res. 2024-5-9

[3]
Unraveling Small Molecule-Mediated Sirtuin 3 Activation at a Distinct Binding Site for Cardioprotective Therapies.

ACS Cent Sci. 2025-4-14

[4]
Friend or foe? The role of SIRT6 on macrophage polarized to M2 subtype in acute kidney injury to chronic kidney disease.

Ren Fail. 2025-12

[5]
Structural and enzymatic plasticity of SIRT6 deacylase activity.

J Biol Chem. 2025-3-25

[6]
Decoding allosteric landscapes: computational methodologies for enzyme modulation and drug discovery.

RSC Chem Biol. 2025-2-14

[7]
The galactokinase enzyme of yeast senses metabolic flux to stabilize galactose pathway regulation.

Nat Metab. 2025-1

[8]
Sirtuins as Key Regulators in Pancreatic Cancer: Insights into Signaling Mechanisms and Therapeutic Implications.

Cancers (Basel). 2024-12-6

[9]
Epigenetics-targeted drugs: current paradigms and future challenges.

Signal Transduct Target Ther. 2024-11-26

[10]
Toward the Design of Allosteric Effectors: Gaining Comprehensive Control of Drug Properties and Actions.

J Med Chem. 2024-10-10

本文引用的文献

[1]
Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy.

Chem Sci. 2020-11-2

[2]
Mechanism of allosteric activation of SIRT6 revealed by the action of rationally designed activators.

Acta Pharm Sin B. 2021-5

[3]
Untangling Dual-Targeting Therapeutic Mechanism of Epidermal Growth Factor Receptor (EGFR) Based on Reversed Allosteric Communication.

Pharmaceutics. 2021-5-18

[4]
Emerging roles of SIRT6 in human diseases and its modulators.

Med Res Rev. 2021-3

[5]
Sirtuin 6: A potential therapeutic target for cardiovascular diseases.

Pharmacol Res. 2021-1

[6]
IDDB: a comprehensive resource featuring genes, variants and characteristics associated with infertility.

Nucleic Acids Res. 2021-1-8

[7]
The Answer Lies in the Energy: How Simple Atomistic Molecular Dynamics Simulations May Hold the Key to Epitope Prediction on the Fully Glycosylated SARS-CoV-2 Spike Protein.

J Phys Chem Lett. 2020-10-1

[8]
Mapping allosteric communications within individual proteins.

Nat Commun. 2020-7-31

[9]
AlloSigMA 2: paving the way to designing allosteric effectors and to exploring allosteric effects of mutations.

Nucleic Acids Res. 2020-7-2

[10]
Structural basis for the activation and inhibition of Sirtuin 6 by quercetin and its derivatives.

Sci Rep. 2019-12-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索