Aggarwal Tarni, Udai Ankit, Saha Pratim K, Ganguly Swaroop, Bhattacharya Pallab, Saha Dipankar
Applied Quantum Mechanics Laboratory, Indian Institute of Technology Bombay, Mumbai 400076, India.
Solid-State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122, United States.
ACS Appl Mater Interfaces. 2022 Mar 23;14(11):13812-13819. doi: 10.1021/acsami.1c20003. Epub 2022 Mar 9.
Efficiency droop at high carrier-injection regimes is a matter of concern in InGaN/GaN quantum-confined heterostructure-based light-emitting diodes (LEDs). Processes such as Shockley-Reed-Hall and Auger recombinations, electron-hole wavefunction separation from polarization charges, carrier leakage, and current crowding are identified as the primary contributors to efficiency droop. Auger recombination is a critical contributor owing to its cubic dependence on carrier density, which can not be circumvented using an advanced physical layout. Here, we demonstrate a potential solution through the positive effects from an optical cavity in suppressing the Auger recombination rate. Besides the phenomenon being fundamentally important, the advantages are technologically essential. The observations are manifested by the ultrafast transient absorption pump-probe spectroscopy performed on an InGaN/GaN-based multi-quantum well heterostructure with external DBR mirrors of varying optical confinement. The optical confinement modulates the nonlinear carrier and photon dynamics and alters the rate of dominant recombination mechanisms in the heterostructure. The carrier capture rate is observed to be increasing, and the polarization field is reducing in the presence of optical feedback. Reduced polarization increases the effective bandgap, resulting in the suppression of the Auger coefficient. Superluminescent behavior along with enhanced spectral purity in the emission spectra in presence of optical confinement is also demonstrated. The improvement is beyond the conventional Purcell effect observed for the quantum-confined systems.
在基于InGaN/GaN量子限制异质结构的发光二极管(LED)中,高载流子注入条件下的效率下降是一个备受关注的问题。诸如肖克利-里德-霍尔复合和俄歇复合、极化电荷导致的电子-空穴波函数分离、载流子泄漏和电流拥挤等过程被认为是效率下降的主要原因。俄歇复合是一个关键因素,因为它与载流子密度呈立方关系,采用先进的物理布局也无法避免。在此,我们通过光学腔在抑制俄歇复合率方面的积极作用展示了一种潜在的解决方案。除了该现象在本质上很重要之外,这些优势在技术上也是必不可少的。这些观察结果通过对具有不同光学限制的外部DBR镜的InGaN/GaN基多量子阱异质结构进行超快瞬态吸收泵浦-探测光谱得以体现。光学限制调制了非线性载流子和光子动力学,并改变了异质结构中主要复合机制的速率。在存在光学反馈的情况下,观察到载流子俘获率增加,极化场减小。极化减小会增加有效带隙,从而抑制俄歇系数。还展示了在存在光学限制的情况下,发射光谱中出现超发光行为以及光谱纯度提高的现象。这种改善超出了量子限制系统中观察到的传统珀塞尔效应。