Carrell Alyssa A, Lawrence Travis J, Cabugao Kristine Grace M, Carper Dana L, Pelletier Dale A, Lee Jun Hyung, Jawdy Sara S, Grimwood Jane, Schmutz Jeremy, Hanson Paul J, Shaw A Jonathan, Weston David J
Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA.
Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, 1502 Cumberland Ave., Knoxville, TN, 37996, USA.
New Phytol. 2022 Jun;234(6):2111-2125. doi: 10.1111/nph.18072. Epub 2022 Mar 28.
Sphagnum peatmosses are fundamental members of peatland ecosystems, where they contribute to the uptake and long-term storage of atmospheric carbon. Warming threatens Sphagnum mosses and is known to alter the composition of their associated microbiome. Here, we use a microbiome transfer approach to test if microbiome thermal origin influences host plant thermotolerance. We leveraged an experimental whole-ecosystem warming study to collect field-grown Sphagnum, mechanically separate the associated microbiome and then transfer onto germ-free laboratory Sphagnum for temperature experiments. Host and microbiome dynamics were assessed with growth analysis, Chla fluorescence imaging, metagenomics, metatranscriptomics and 16S rDNA profiling. Microbiomes originating from warming field conditions imparted enhanced thermotolerance and growth recovery at elevated temperatures. Metagenome and metatranscriptome analyses revealed that warming altered microbial community structure in a manner that induced the plant heat shock response, especially the HSP70 family and jasmonic acid production. The heat shock response was induced even without warming treatment in the laboratory, suggesting that the warm-microbiome isolated from the field provided the host plant with thermal preconditioning. Our results demonstrate that microbes, which respond rapidly to temperature alterations, can play key roles in host plant growth response to rapidly changing environments.
泥炭藓是泥炭地生态系统的重要组成部分,它们有助于吸收和长期储存大气中的碳。气候变暖对泥炭藓构成威胁,并且已知会改变其相关微生物群落的组成。在此,我们采用微生物群落转移方法来测试微生物群落的热起源是否会影响宿主植物的耐热性。我们利用一项实验性的全生态系统变暖研究来采集田间生长的泥炭藓,机械分离其相关的微生物群落,然后将其转移到无菌的实验室泥炭藓上进行温度实验。通过生长分析、叶绿素荧光成像、宏基因组学、宏转录组学和16S rDNA分析来评估宿主和微生物群落的动态变化。源自变暖田间条件的微生物群落在高温下赋予了增强的耐热性和生长恢复能力。宏基因组和宏转录组分析表明,变暖以诱导植物热休克反应的方式改变了微生物群落结构,特别是HSP70家族和茉莉酸的产生。即使在实验室中没有进行变暖处理,热休克反应也会被诱导,这表明从田间分离的温暖微生物群落为宿主植物提供了热预处理。我们的结果表明,对温度变化反应迅速的微生物可以在宿主植物对快速变化环境的生长反应中发挥关键作用。