Kochetkova Olga Yu, Demina Tatiana S, Antonova Olga Yu
Institute of Theoretical and Experimental Biophysics Russian Academy of Science, Institutskaya Str. 3, 142290 Puschino, Russia.
Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Profsouznaya Str. 70, 117393 Moscow, Russia.
Polymers (Basel). 2022 Feb 25;14(5):931. doi: 10.3390/polym14050931.
Several variants of hybrid polyelectrolyte microcapsules (hPEMC) were designed and produced by modifying in situ gelation methods and layer-by-layer (LbL) techniques. All of the hPEMC designs tested in the study demonstrated high efficiency of the model hydrophilic compound loading into the carrier cavity. In addition, the microcarriers were characterized by high efficiency of incorporating the model hydrophobic compound rhodamine B isothiocyanate (RBITC) into the hydrophobic layer consisting of poly-(d,l)-lactide-co-glycolide (PLGA), oligo-(l)-lactide (OLL), oligo-(d)-lactide (OLD) and chitosan/gelatin/poly-l-lactide copolymer (CGP). The obtained microcapsules exhibited high storage stability regardless of the composition and thickness of the polyelectrolyte shell. Study of the impact of hybrid polyelectrolyte microcapsules on viability of the adhesive L929 and suspension HL-60 cell lines revealed no apparent toxic effects of hPEMC of different architecture on live cells. Interaction of hPEMC with peritoneal macrophages for the course of 48 h resulted in partial deformation and degradation of microcapsules accompanied by release of the content of their hydrophilic (BSA-fluorescein isothiocyanate conjugate (BSA-FITC)) and hydrophobic (RBITC) layer. Our results demonstrate the functional efficiency of novel hybrid microcarriers and their potential for joint delivery of drugs with different physico-chemical properties in complex therapy.
通过改进原位凝胶化方法和层层(LbL)技术,设计并制备了几种混合聚电解质微胶囊(hPEMC)变体。该研究中测试的所有hPEMC设计均显示出将模型亲水性化合物高效负载到载体腔中的能力。此外,这些微载体的特征在于能够高效地将模型疏水性化合物异硫氰酸罗丹明B(RBITC)掺入由聚(d,l)-丙交酯-共-乙交酯(PLGA)、聚(l)-丙交酯(OLL)、聚(d)-丙交酯(OLD)以及壳聚糖/明胶/聚-l-丙交酯共聚物(CGP)组成的疏水层中。无论聚电解质壳的组成和厚度如何,所获得的微胶囊均表现出高储存稳定性。对混合聚电解质微胶囊对贴壁L929和悬浮HL-60细胞系活力影响的研究表明,不同结构的hPEMC对活细胞没有明显的毒性作用。hPEMC与腹膜巨噬细胞相互作用48小时后,微胶囊出现部分变形和降解,同时释放其亲水层(牛血清白蛋白-异硫氰酸荧光素共轭物(BSA-FITC))和疏水层(RBITC)的内容物。我们的结果证明了新型混合微载体的功能效率及其在联合治疗中共同递送具有不同物理化学性质药物的潜力。
Drug Deliv. 2021-12
Molecules. 2020-4-22
Mater Sci Eng C Mater Biol Appl. 2018-1-5
Molecules. 2018-4-14
Colloids Surf B Biointerfaces. 2017-6-23
Cell Stress Chaperones. 2017-1