Barbier Marie, Croizier Sophie, Alvarez-Bolado Gonzalo, Risold Pierre-Yves
Department of Psychiatry, Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
J Chem Neuroanat. 2022 Apr;121:102089. doi: 10.1016/j.jchemneu.2022.102089. Epub 2022 Mar 10.
The lateral hypothalamus (LHA) is still a poorly understood brain region. Based on published Dlx and Gad gene expression patterns in the embryonic and adult hypothalamus respectively, three large areas are identified in the LHA. A central tuberal LHA region is already well described as it contains neurons producing the peptides melanin-concentrating hormone or hypocretin. This region is rich in GABAergic neurons and is specified by Dlx gene expression in the rodent embryo. Rostrally and caudally bordering the tuberal LHA, two Dlx-GAD-GABA poor regions are then easily delineated. The three regions show different organizational schema. The tuberal region is reticularly organized, connected with the cerebral cortex and the spinal cord, and its embryonic development occurs along the tractus postopticus. The region anterior to it is associated with the stria medullaris in both embryonic and adult subjects. The posterior LHA region is made of differentiated nuclei and includes the subthalamic nucleus. Therefore, the LHA is divided into three distinct parts: in addition to the well-known tuberal LHA, caudal and anterior LHA regions exist that have specific anatomical and functional characteristics. The hypothalamus is made up of several dozens of nuclei or areas that are more or less well differentiated and whose boundaries and arrangements are drawn differently according to authors and atlases (Allen Institute, 2004; Paxinos and Franklin, 2019; Paxinos and Watson, 2013; Swanson, 2004). The dominant hypothesis for more than 50 years is that these structures are distributed within three antero-posterior areas (anterior, tuberal, posterior) and more or less three longitudinal zones (lateral, medial and periventricular) (Fig. 1). In addition to these regions, several adjacent territories are often associated to the hypothalamus. The preoptic area is functionally related to the hypothalamus, but it is better seen as a telencephalic structure based on developmental data (Croizier et al., 2015; Puelles and Rubenstein, 2015). Lately, the zona incerta and the subthalamic nucleus (STN) have also been associated to the hypothalamus on the basis of their connections and development for the STN (Altman and Bayer, 1986; Barbier and Risold, 2021; Swaab et al., 2021). However, the zona incerta is still included in the 'pre-thalamus' or "ventral thalamus" in the embryo (Puelles and Rubenstein, 2015). Thus, the boundaries of the hypothalamus remain blurred around what we can call a 'core' made of the anterior to posterior regions (Brooks, 1988). In addition, unlike other large brain regions that are characterized early on by a molecular signature, i.e. by the embryonic expression of specific molecular markers, data illustrating the distribution of dozens of transcription factors involved in brain patterning and cell lineage specification confirmed the extremely heterogeneous and mosaic nature of the anterior and posterior regions of the hypothalamus (Alvarez-Bolado, 2019; Puelles et al., 2013; Puelles and Rubenstein, 2015). The rich nuclear organization of the medial and periventricular zones of the hypothalamus is consistent with the mosaic expression of developmental genes. The LHA, however, is often perceived as much more homogeneous in its cytoarchitectural organization. At the same time, there is little information regarding the expression of developmental genes in the anterior and posterior territories of the LHA. Most studies focus on the tuberal LHA which expresses many of these genes. Admittedly, even in the adult hypothalamus, the internal boundaries of the LHA are difficult to identify and the same is true in the embryo. Developmental data alone are insufficient to achieve a better understanding of the LHA anatomical organization and for this region as for medial and periventricular zones, a coherence must be established between development and adult anatomical organization. Among the most useful neurochemical markers to identify large regions of the forebrain, those involved in the identification of GABAergic and glutamatergic neurons have proven to be particularly efficient. Indeed, GABAergic neurons are not ubiquitously distributed. Large regions of the forebrain are rich in such cells, including the basal telencephalon, but others contain few or no GABAergic cells and are rich in glutamatergic neurons instead (for example the dorsal thalamus that is free of GABA-neurons in rodents). The same applies for the hypothalamus: several structures of the hypothalamus are free of GABAergic neurons, as, for example, the mammillary nuclei (Hahn et al., 2019). Recently, we also identified a GABA-poor posterior LHA territory that includes the (STN), and is localized caudal to the GABA-rich tuberal LHA (Barbier et al., 2020; Barbier and Risold, 2021; Chometton et al., 2016b). Therefore, the LHA seems partitioned into GABA-rich/GABA-poor regions. However, to define or confirm distinct neuroanatomical entities, these regions must have a specific embryological origin, and show specific hodological patterns and functions. Hence, the purpose of this short review is to identify divisions of the LHA based on developmental and neurochemical criteria. Such an analysis seems to us relevant in order to allow later functional studies on regions whose boundaries will be based on objective criteria.
外侧下丘脑(LHA)仍是一个了解甚少的脑区。根据已发表的分别在胚胎期和成年期下丘脑中的Dlx和Gad基因表达模式,在LHA中确定了三个大区域。中央结节性LHA区域已有充分描述,因为它包含产生肽类黑色素浓缩激素或食欲素的神经元。该区域富含GABA能神经元,并由啮齿动物胚胎中的Dlx基因表达所确定。在结节性LHA的头侧和尾侧边界处,然后很容易勾勒出两个Dlx - GAD - GABA含量低的区域。这三个区域呈现出不同的组织结构模式。结节性区域呈网状组织,与大脑皮层和脊髓相连,其胚胎发育沿视束进行。其前方区域在胚胎期和成年期均与髓纹相关。LHA后方区域由分化的核组成,包括丘脑底核。因此,LHA分为三个不同的部分:除了众所周知的结节性LHA外,还存在具有特定解剖和功能特征的尾侧和头侧LHA区域。下丘脑由几十个或多或少分化良好的核或区域组成,其边界和排列根据作者和图谱(艾伦脑科学研究所,2004年;帕西诺斯和富兰克林,2019年;帕西诺斯和沃森,2013年;斯旺森,2004年)而有所不同。50多年来的主流假说是,这些结构分布在三个前后区域(前部、结节部、后部)以及或多或少三个纵向区域(外侧、内侧和室周)(图1)。除了这些区域外,几个相邻区域通常也与下丘脑相关。视前区在功能上与下丘脑相关,但根据发育数据,它更应被视为端脑结构(克罗齐尔等人,2015年;普埃莱斯和鲁宾斯坦,2015年)。最近,未定带和丘脑底核(STN)也基于它们与下丘脑的连接以及STN的发育而与下丘脑相关联(奥尔特曼和拜尔,1986年;巴比耶和里索尔德,2021年;斯瓦布等人,2021年)。然而,在胚胎中,未定带仍被归入“前丘脑”或“腹侧丘脑”(普埃莱斯和鲁宾斯坦,2015年)。因此,围绕我们可以称为由前后区域组成的“核心”,下丘脑的边界仍然模糊不清(布鲁克斯,1988年)。此外,与其他早期由分子特征即特定分子标记的胚胎表达所表征的大脑大区域不同,说明参与脑模式形成和细胞谱系特化的数十种转录因子分布的数据证实了下丘脑前后区域极其异质和镶嵌的性质(阿尔瓦雷斯 - 博拉多,2019年;普埃莱斯等人,2013年;普埃莱斯和鲁宾斯坦,2015年)。下丘脑内侧和室周区域丰富的核组织与发育基因的镶嵌表达一致。然而,LHA在细胞结构组织上通常被认为更加均匀。同时,关于LHA前后区域发育基因表达的信息很少。大多数研究集中在表达许多这些基因的结节性LHA。诚然,即使在成年下丘脑中,LHA的内部边界也难以识别,在胚胎中也是如此。仅发育数据不足以更好地理解LHA的解剖组织,对于该区域以及内侧和室周区域而言,必须在发育和成年解剖组织之间建立一致性。在识别前脑大区域最有用的神经化学标记中,那些参与识别GABA能和谷氨酸能神经元的标记已被证明特别有效。事实上,GABA能神经元并非普遍分布。前脑的大区域富含此类细胞,包括基底前脑,但其他区域含有很少或没有GABA能细胞,而是富含谷氨酸能神经元(例如啮齿动物中没有GABA神经元的背侧丘脑)。下丘脑也是如此:下丘脑的几个结构没有GABA能神经元,例如乳头体核(哈恩等人,2019年)。最近,我们还确定了一个GABA含量低的LHA后方区域,其中包括(STN),并且位于富含GABA的结节性LHA尾侧(巴比耶等人,2020年;巴比耶和里索尔德,2021年;肖梅顿等人,2016b)。因此,LHA似乎被划分为富含GABA/低GABA区域。然而,为了定义或确认不同的神经解剖实体,这些区域必须有特定胚胎起源,并显示特定的传导通路模式和功能。因此,这篇简短综述的目的是根据发育和神经化学标准识别LHA的分区。在我们看来,这样的分析是相关的,以便随后能够对基于客观标准确定边界的区域进行功能研究。