Suppr超能文献

利用行政索赔数据识别儿科急诊科因攻击行为的就诊情况。

Identifying pediatric emergency department visits for aggression using administrative claims data.

作者信息

Peleggi Analise, Strub Bryan, Kim Soo-Jeong, Rockhill Carol M

机构信息

University of Washington, Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States of America.

Biostatistics, Epidemiology, and Analytics in Research, Seattle Children's Research Institute, Seattle, WA, United States of America.

出版信息

Am J Emerg Med. 2022 May;55:89-94. doi: 10.1016/j.ajem.2022.02.061. Epub 2022 Mar 9.

Abstract

OBJECTIVE

Violence and aggressive behaviors among youth are a leading cause of Emergency Department (ED) mental health (MH) encounters. A consistent method is needed for public health research, to identify ED encounters associated with aggression. The aim of this study was to develop such a screening procedure.

DATA SOURCES

Electronic records and administrative claims data related to MH related ED encounters at one of Pediatric Health Information System (PHIS) Children's Hospitals in the United States from January 1, 2019 to December 31, 2019.

STUDY DESIGN

The authors selected a combination of ICD-10 codes to screen MH ED encounters for aggression; and then conducted a chart review to compare characteristics of groups that screened positive vs. screened negative, and groups with confirmed vs. without confirmed aggression.

DATA EXTRACTION METHOD

Unique ED encounters associated with a MH related ICD-10 code from a one-year period at the study institution were extracted (n = 3092 MH ED encounters). Encounters with any aggression-associated codes were identified as "screen-positive" (N = 349). From the remaining "screen-negative" encounters, 352 unique encounters were randomly selected as a comparison group. Both groups were chart reviewed to investigate the accuracy of the screening method.

MAIN FINDING

Chart review confirmed aggression in 287 of 349 screen-positive and 48 of 352 select screen-negative, chart-reviewed encounters. Additional codes were added, with a goal of finding the combination of codes with the highest accuracy. The resulting screen had sensitivity, specificity, positive and negative predictive values of 0.901, 0.817, 0.818, and 0.864, respectively.

PRINCIPAL CONCLUSIONS

This paper presents a screening method for identifying ED encounters related to aggression. A replication study will be necessary to validate the method prior to applying to large claims data. If validated, it will support future research on this important population.

摘要

目的

青少年中的暴力和攻击行为是急诊科(ED)心理健康(MH)就诊的主要原因。公共卫生研究需要一种一致的方法来识别与攻击行为相关的ED就诊情况。本研究的目的是开发这样一种筛查程序。

数据来源

与2019年1月1日至2019年12月31日期间美国儿科健康信息系统(PHIS)儿童医院之一的与MH相关的ED就诊有关的电子记录和行政索赔数据。

研究设计

作者选择了国际疾病分类第十版(ICD-10)代码的组合来筛查MH ED就诊中的攻击行为;然后进行病历审查,以比较筛查呈阳性与筛查呈阴性的组以及有确诊攻击行为与无确诊攻击行为的组的特征。

数据提取方法

提取了研究机构一年内与MH相关的ICD-10代码相关的独特ED就诊情况(n = 3092次MH ED就诊)。任何与攻击相关代码的就诊被确定为“筛查阳性”(N = 349)。从其余“筛查阴性”就诊中,随机选择352次独特就诊作为对照组。对两组进行病历审查以调查筛查方法的准确性。

主要发现

病历审查证实,在349次筛查阳性就诊中有287次存在攻击行为,在352次经病历审查的选择的筛查阴性就诊中有48次存在攻击行为。添加了其他代码,目标是找到准确率最高的代码组合。最终的筛查方法的灵敏度、特异度、阳性预测值和阴性预测值分别为0.901、0.817、0.818和0.864。

主要结论

本文提出了一种识别与攻击行为相关的ED就诊情况的筛查方法。在应用于大型索赔数据之前,有必要进行重复研究以验证该方法。如果得到验证,它将支持对这一重要人群的未来研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验